K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IKBài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EFBài 1:1) Tính nhanh:d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )2)Rút gọn và tính giá trị của biểu thức:b)...
Đọc tiếp

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF

Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z

0
20 tháng 9 2021

1) \(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

\(=\left(x+3\right).x^2-5\left(x+3\right)+\left(x+4\right)\left(x-1x^2\right)\)

\(=x^3+3x^2-5x-15+\left(x+4\right)\left(x-x^2\right)\)

\(=x^3+3x^2-5x-15-x^3+x^2-4x^2+4x\)

\(=3x^2-5x-15-3x^2+4x\)

\(=-x-15\)

20 tháng 9 2021

2) Đặt đa thức là \(N\left(x\right)\)ta được: \(3x^3+2x^2-x+k=N\left(x\right)\left(x-1\right)\)

Để \(3x^3+2x^2-x+K⋮x-1\Leftrightarrow x=1\)

Thay vào ta được

\(\Rightarrow3.1^3+2.1^2-1+K=0\)

\(\Rightarrow3+2-1+K=0\)

\(\Rightarrow K=-4\)

4 tháng 5 2016

Với mọi \(k\ge2\)  thì \(\frac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}=\frac{\left[\left(\sqrt{k-1}\right)^2+\left(\sqrt{k+1}\right)^2+\sqrt{\left(k-1\right)\left(k+1\right)}\right]\left(\sqrt{k+1}-\sqrt{k-1}\right)}{\left(\sqrt{k-1}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k-1}\right)}\)

                                                \(=\frac{\sqrt{\left(k+1\right)^3}-\sqrt{\left(k-1\right)^3}}{2}\)

Suy ra tổng đã cho có thể viết là :

\(A=\frac{1}{2}\left[\sqrt{3^3}-\sqrt{1^3}+\sqrt{4^3}-\sqrt{2^3}+\sqrt{5^3}-\sqrt{3^3}+\sqrt{6^3}-\sqrt{4^3}+...+\sqrt{101^3}-\sqrt{99^3}\right]\)

    \(=\frac{1}{2}\left[-1-\sqrt{2^3}+\sqrt{101^3}+\sqrt{100^3}\right]\)

   \(=\frac{999+\sqrt{101^3}-\sqrt{8}}{2}\)

16 tháng 11 2022

=>k^3+3k^2-k^2+9+6 chia hết cho k+3

=>\(k+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(k\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)