Cho tam giác ABC có AB = AC , tia phân giác của góc A cắt BC tại D . Lấy điểm E trên cạnh AD .
a) C/m tam giác AEB = AEC
b) C/m ED là phân giác của góc BEC
C/m AD vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB và ΔAEC có
AB=AC
góc BAE=góc CAE
AE chung
Do đó: ΔAEB=ΔAEC
b: Xét ΔEDB và ΔEDC có
ED chung
EB=EC
BD=CD
DO đó: ΔEDB=ΔEDC
=>góc BED=góc CED
=>ED là phân giác của góc BEC
c: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
--
a) Xét hai tg AEB và AEC có
AE cạnh chungg
BAD = CAD [ Tia phân giác của góc A ]
AB = AC [ gt ]
=> tg AEB= AEC [ c - g c ]
b ) Tam giác ABC cân có AD là phân giác nên đồng thời là đường cao => AD vuông góc với BC
tg AEB = tg AEC [ cmt ]
=> EB= EC => tg BEC cân tại B , có AD là đường cao nên đồng thời là phân giác => ED là phan giác góc BEC