Cho ta, giác ABC có góc B=20độ, góc C=30độ, BC=60cm. kẻ đường cao AM\(\left(M\in BC\right)\). Tính BM,MC,AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB vuông tại A và ΔHMB vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)(BM là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔAMB=ΔHMB(Cạnh huyền-góc nhọn)
Suy ra: AM=HM(Hai cạnh tương ứng)
Làm
a) Xét hai tam giác vuông ABM và tam giác vuông KBM có :
BM là cạnh chung
góc ABM = góc KBM ( gt )
Do đó : Tam giác ABM = tam giác KBM ( cạnh huyền - góc nhọn )
=> BA = BK nên B thuộc đường trung trực của AK
MA = MK nên K thuộc đường trung trực của AK
Vậy BM là đường trung trực của AK
b) Xét hai tam giác vuông AMN và tam giác KMC có :
góc AMN = góc KMC ( đối đỉnh )
MA = MK ( theo câu a )
Do đó : tam giác AMN = KMC ( cạnh góc vuông - góc nhọn )
Vậy MC = MN
c) Phần c không dõ đề bài nên mk k giải đc câu c nếu muốn giải câu c thì cậu gửi đề bài cho mk mk giải cho
d) Ta có : AB + AN = BN
BK + KC = BC
Mà BA = BK ( theo câu a )
AN = KC ( Theo câu b )
=> BN = BC ( *)
Xét tam giác NBM và tam giác CBM có :
BM là cạnh chung
BN = BC ( theo *)
góc NBM = góc CBM ( gt )
Do đó : tam giác NBM = tam giác CBM ( c.g.c )
=> góc BMN = góc BMC
mà góc BMN + góc BMC = 180°
=> góc BMN = góc BMC = 180° : 2
=> góc BMN = góc BMC = 90°
Vậy BM vuông hóc với NC
HỌC TỐT
Hình bn tự vẽ nhé
a. Xét hai tam giác vuông ABM và tam giác vuông KBM có;
góc BAM = góc BKM = 90độ
cạnh BM chung
góc ABM = góc KBM [ vì BM là tia pg góc B ]
Do đó ; tam giác ABM = tam giác KBM [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = KB nên B \(\in\)đường trung trực của AK
và MA = MK nên M \(\in\)đường trung trực của AK
\(\Rightarrow\)BM là đường trung trực của AK
b.Xét hai tam giác vuông AMN và tam giác vuông KMC có ;
góc MAN = góc MKC = 90độ
AM = KM [ theo câu a ]
góc AMN = góc KMC [ đối đinh ]
Do đó ; tam giác AMN = tam giác KMC [ cạnh góc vuông - góc nhọn ]
\(\Rightarrow\)MN = MC [ cạnh tương ứng ]
c.Theo câu a ; tam giác ABM = tam giác KBM
\(\Rightarrow\)AM = KM [ cạnh tương ứng ] [ 1 ]
Xét tam giác KMC vuông tại K nên ;
MK bé hơn MC [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ;
AM bé hơn MC
d. Theo câu b ; tam giác AMN = tam giác KMC
\(\Rightarrow\)AN = KC [ cạnh tương ứng ]
mà BA = BK [ vì tam giác ABM = tam giác KBM theo câu a ]
\(\Leftrightarrow\)AN + BA = KC + BK
\(\Rightarrow\) BN = BC nên B thuộc đường trung trực của CN
mà MN = MC nên M thuộc đường trung trực của CN
Vậy BM thuộc đường trung trực của CN
\(\Rightarrow\)BM vuông góc với CN
Theo mk nghĩ thì câu c . So sánh AM với MC
d. BM vuông góc với CN
HỌC TỐT
Nhớ kb với mk nha
a.Ta có: AB=AC ( gt )
=> Tam giác ABC cân tại A
Mà AM là đường trung tuyến => AM cũng là đường cao
=> AM vuông góc với BC
b. Ta có: BH = BC : 2 ( AM là đường trung tuyến )
=> BH = 32 : 2 = 16cm
Áp dụng định lý pitago vào tam giác vuông ABM, có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM=\sqrt{AB^2-BM^2}=\sqrt{34^2-16^2}=\sqrt{900}=30cm\)
c.Xét tam giác vuông BMF và tam giác vuông CME, có:
góc B = góc C ( ABC cân )
BM = CM ( gt )
Vậy tam giác vuông BMF = tam giác vuông CME ( cạnh huyền. góc nhọn)
=> BF = CE ( 2 cạnh tương ứng )
=> AF = AE ( AB = AC; BF = CE )
=> Tam giác AEF cân tại A
=> AM vuông với EF (1)
Mà AM cũng vuông với BC (2)
Từ (1) và (2) suy ra EF//BC
d. ta có: BM = CM ( gt ) (3)
Mà trong tam giác vuông MCE có ME là cạnh huyền
=> \(ME>MC\) (4)
Từ (3) và (4) suy ra \(ME>MB\)
a: Ta có:ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: BM=CM=BC/2=16cm
=>AM=30(cm)
c: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
\(\widehat{FAM}=\widehat{EAM}\)
Do đó: ΔAFM=ΔAEM
Suy ra: AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:
BM là cạnh chung
\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)
b) Do \(\Delta AMB=\Delta HMB\) (cmt)
\(\Rightarrow AM=HM\) (hai cạnh tương ứng)
c) \(\Delta MHC\) vuông tại H
\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất
\(\Rightarrow HM< MC\)
Lại có HM = AM (cmt)
\(\Rightarrow AM< MC\)