K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMB vuông tại A và ΔHMB vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)(BM là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔAMB=ΔHMB(Cạnh huyền-góc nhọn)

Suy ra: AM=HM(Hai cạnh tương ứng)

11 tháng 3 2023

a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:

BM là cạnh chung

\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)

b) Do \(\Delta AMB=\Delta HMB\) (cmt)

\(\Rightarrow AM=HM\) (hai cạnh tương ứng)

c) \(\Delta MHC\) vuông tại H

\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất

\(\Rightarrow HM< MC\)

Lại có HM = AM (cmt)

\(\Rightarrow AM< MC\)

a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có

BH chung

góc ABH=góc MBH

=>ΔBAH=ΔBMH

b: BA=BM

HA=HM

=>BH là trung trực của AM

=>BH vuông góc AM

c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có

BM=BA

góc MBN chung

=>ΔMBN=ΔABC

=>BN=BC

Xét ΔBNC có BA/BN=BM/BC

nên AM//NC

26 tháng 4 2017

a) tam giác ABM và tam giác HBM có:

<ABM = <HBM (p/g)

BM chung

<A = <H

=>tam giác ABM = tam giác AHM (ch-gn)

b) theo câu a => AM = HM =>BM là trung trực của AH

c) tam giác AKM và tam giác HMC có:

<AMK = <HMC ( đối đỉnh)

AM = HM ( theo câu b)

<MAK = <MHC (=90 độ)

=> tam giác AKM = tam giác HMC (cgv-gn)

=>MK = MC ( hai cạnh tương ứng)

d)...