So sánh
a) 231 và 321
b) S= 1+2+...+250 và 251
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{72}{145}< \frac{72}{144}=\frac{1}{2}\)
\(\frac{250}{499}>\frac{250}{500}=\frac{1}{2}\)
\(\Rightarrow\frac{72}{145}< \frac{250}{499}\)
A) Ta có:
\(\dfrac{12}{13}=\dfrac{13}{13}-\dfrac{1}{13}=1-\dfrac{1}{13}\)
\(\dfrac{13}{14}=\dfrac{14}{14}-\dfrac{1}{14}=1-\dfrac{1}{14}\)
Mà \(1-\dfrac{1}{13}< -\dfrac{1}{14}\)
\(\Rightarrow\dfrac{12}{13}< \dfrac{13}{14}\)
B) Ta có:
\(\dfrac{125}{251}=\dfrac{251}{251}-\dfrac{126}{251}=1-\dfrac{126}{251}\)
\(\dfrac{127}{253}=\dfrac{253}{253}-\dfrac{126}{253}=1-\dfrac{126}{253}\)
Mà: \(1-\dfrac{126}{251}< 1-\dfrac{126}{253}\)
\(\Rightarrow\dfrac{125}{251}< \dfrac{127}{253}\)
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
Do \(9^{10}>8^{10},3>2\)
\(\Rightarrow9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)
\(3^{21}=3^{20}\cdot3\)
\(2^{31}=2^{30}\cdot2\)
mà \(3^{20}>2^{30}\)
nên \(3^{21}>2^{31}\)
Tương tự câu 1
Chú ý các tỉ số lượng giác sin và cos có giá trị trong khoảng (0;1)
a) có 231=2.230=2.810
321=3.320=3.910
vì 2.810 < 3.910 nên 231 < 321
b)
có S = 1 + 2 + ... + 250
<=> S = 20 + 21 + 22 + 23 + ... + 250
=> 2S = 2(20 + 21 + 22 + 23 + ... + 250) = 21 + 22 + 23 + ... + 251
=> 2S - S = 21 + 22 + 23 + ... + 251 - ( 20 + 21 + 22 + 23 + ... + 250)
=> S = 21 + 22 + 23 + ... + 251 - 20 - 21 - 22 - 23 - ... - 250
=> S = 251 - 20
=> S = 251 -1 < 251
=> S < 251