Bài 1: cho tam giác ABC vuông tại A, gọi I là giao của các đường phân giác trong của tam giác.
a) Biết AB=5cm , IC=6cm. Tính BC
b) Biết IB=√ 5, IC=√ 10. Tính AB, AC.
Bài 2: cho tam giác ABC. Đường trung tuyến AD, đường cao BH, đường phân giác CE đồng quy. CMR: (BC+CA)(BC^2+CA^2-AB^2)=2BC.CA^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ CH ⊥ BI và CH cắt BA tại D. Tam giác BCD có BH vừa là phân giác vừa là đường cao => Tam giác BCD cân tại B => BH là đường trung tuyến luôn => CH = DH. và DC = 2HC.
Đặt BC = x() Ta có: AD = BD - AB = BC - AB = x - 5
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
=> tam giác AEB ~ tam giác HEC(g.g)
=> Góc HCE = góc ABE.
=> Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) => Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
=> tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2CH² = IC²
=> √2.CH = IC
=> CH = (IC)/(√2)
=> CH = 6/(√2)
=> DC = 2CH = 12/(√2) = 6√2
Xét tam giác: ADC có góc DAC = 90độ
=> Áp dụng định lý Py-ta-go ta có: DC² = AD² + AC²
=> AC² = DC² - AD²
=> AC² = (6√2)² - (x - 5)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB²
=> AC² = x² - 5² (4)
Từ (3) và (4) => (6√2)² - (x - 5)² = x² - 5²
<=> 72 - (x² - 10x + 25) = x² - 25
<=> 72 - x² + 10x - 25 - x² + 25 = 0
<=> -2x² + 10x + 72 = 0
<=> x² - 5x - 36 = 0
<=> x² - 9x + 4x - 36 = 0
<=> x(x - 9) + 4(x - 9) = 0
<=> (x - 9)(x + 4) = 0
<=> x - 9 = 0 hoặc x + 4 = 0
<=> x = 9 hoặc x = -4
=> chỉ có giá trị x = -9 là thoả mãn đk x > 5
=> BC = 5cm
kẻ bí mật làm đùng rồi
tk mình nhé chúc bạn học giỏi ^-^
Cho tam giác ABC vuông tại A,phân giác AD
a,CM √2AD =1AB +1AC
b, Gọi I là giao điểm các đường phân giác của tam giác ABC, biết IB=√5,IC=√10. Tính diện tích tam giác ABC
a) Đặt AB = c; AC = b; AD = d.
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có:
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2
Tương tự: S ACD = ½bd.1/√2
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2
mà S ABC = ½bc
=> ½d(b + c)/√2 = ½bc
=> (b + c)/bc = √2/d
<=> 1/b + 1/c = √2/d
b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC.
Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
tam giác AEB ~ tam giác HEC(g.g)
Góc HCE = góc ABE.
Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC²
√2.IH = IC hay CH = IC/√2.
CH =HI=√10 /√2
Suy ra BH=HI+IB=√10 /√2+√5
=>BC=√((√10 /√2+√5)²+(√10 /√2)²)
KC = 2CH = 2.√10/√2
Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC²
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4)
Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB²
20 - (x² - 2ABx +AB²) = x² - AB²
=>10=x(x-AB)
sau đó tính AB rồi tính AC And S ABC