K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2015

Kẻ CH ⊥ BI và CH cắt BA tại D. Tam giác BCD có BH vừa là phân giác vừa là đường cao => Tam giác BCD cân tại B => BH là đường trung tuyến luôn => CH = DH. và DC = 2HC. 
Đặt BC = x() Ta có: AD = BD - AB = BC - AB = x - 5 
Gọi giao điểm của AC và BH là E. 
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh) 
=> tam giác AEB ~ tam giác HEC(g.g) 
=> Góc HCE = góc ABE. 
=> Góc HCE = góc ABC/2 (1) 
Mà Góc ECI = gócACB/2 (2) 
Từ (1) và (2) => Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ. 
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ) 
=> tam giác HIC vuông cân tại H => HI = HC. 
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2CH² = IC² 
=> √2.CH = IC 
=> CH = (IC)/(√2) 
=> CH = 6/(√2) 
=> DC = 2CH = 12/(√2) = 6√2 
Xét tam giác: ADC có góc DAC = 90độ 
=> Áp dụng định lý Py-ta-go ta có: DC² = AD² + AC² 
=> AC² = DC² - AD² 
=> AC² = (6√2)² - (x - 5)² (3) 
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² 
=> AC² = x² - 5² (4) 
Từ (3) và (4) => (6√2)² - (x - 5)² = x² - 5² 
<=> 72 - (x² - 10x + 25) = x² - 25 
<=> 72 - x² + 10x - 25 - x² + 25 = 0 
<=> -2x² + 10x + 72 = 0 
<=> x² - 5x - 36 = 0 
<=> x² - 9x + 4x - 36 = 0 
<=> x(x - 9) + 4(x - 9) = 0 
<=> (x - 9)(x + 4) = 0 
<=> x - 9 = 0 hoặc x + 4 = 0 
<=> x = 9 hoặc x = -4 
=> chỉ có giá trị x = -9 là thoả mãn đk x > 5 
=> BC = 5cm 

22 tháng 11 2017

kẻ bí mật làm đùng rồi 

tk mình nhé chúc bạn học giỏi ^-^

26 tháng 6 2021

A B C M I N P

a) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)

\(\frac{PA}{PC}=\frac{BA}{BC}\Rightarrow\frac{PA}{CA}=\frac{BA}{BA+BC}\Rightarrow PA=\frac{BA.CA}{BA+BC}=\frac{6.8}{6+10}=3\)

\(BP=\sqrt{AB^2+AP^2}=3\sqrt{5}\)

\(\frac{BI}{PI}=\frac{AB}{AP}\Rightarrow\frac{BI}{BP}=\frac{AB}{AB+AP}\Rightarrow BI=\frac{AB.BP}{AB+AP}=\frac{6.3\sqrt{5}}{6+3}=2\sqrt{5}\)

Ta thấy: \(\frac{BI}{BM}=\frac{2\sqrt{5}}{5}=\frac{6}{3\sqrt{5}}=\frac{BA}{BP}\), suy ra \(\Delta BAP~\Delta BIM\)(c.g.c)

Vậy \(\widehat{BIM}=\widehat{BAP}=90^0.\)

b) Vẽ đường tròn tâm M đường kính BC, BI cắt lại (M) tại N.

Ta thấy \(\widehat{BIM}=\widehat{BNC}=90^0\), suy ra MI || CN, vì M là trung điểm BC nên I là trung điểm BN (1)

Dễ thấy \(\widehat{NIC}=\frac{1}{2}\widehat{ABC}+\frac{1}{2}\widehat{ACB}=\widehat{NCI}\), suy ra NI = NC (2)

Từ (1),(2) suy ra \(\tan\frac{\widehat{ABC}}{2}=\tan\widehat{NBC}=\frac{NC}{NB}=\frac{NI}{NB}=\frac{1}{2}\)

Suy ra \(\tan\widehat{ABC}=\frac{2\tan\frac{\widehat{ABC}}{2}}{1-\tan^2\frac{\widehat{ABC}}{2}}=\frac{4}{3}=\frac{AC}{AB}\)

\(\Rightarrow\frac{AC^2}{AB^2+AC^2}=\frac{16}{9+16}=\frac{16}{25}\Rightarrow\frac{AC}{BC}=\frac{4}{5}\)

Vậy \(AB:AC:BC=3:4:5\)