Tìm giá trị nhỏ nhất của A=(2x+1/3)^4+1
ai làm nhanh tick luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)
Vậy đề sai ~v (hay là tui làm sai ta)
các bạn thông cảm mình ko biết viết dấu giá trị tuyệt đối ở trong này
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
bữa nay thi vong trường mình đã làm bài đó rồi bằng-7 chắc 100 phầm trăm
\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)
Vậy,..........
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
\(A=-\left|2x-1\right|\)
Do \(-\left|2x-1\right|\le0\)
\(\Rightarrow Max\)\(A=-0=0\)
Vậy Max A=0 khi x=\(\frac{1}{2}\)
\(B=3-\left|2x-1\right|\)
Do \(\left|2x-1\right|\ge0\)
\(\Rightarrow Max\)\(B=3-0=3\)
Vậy \(Max\)\(B=3\)\(Khi\)\(x=\frac{1}{2}\)
\(C=-\left|2x-1\right|+1\)
Do \(-\left|2x-1\right|\le0\)
\(\Rightarrow Max\)\(C=0+1=1\)
Vậy \(Max\)\(C=1\)\(khi\)\(x=\frac{1}{2}\)
Tìm giá trị nhỏ nhất biết:
A=x^2+3./y-2/-1
làm nhanh hộ mk, mk cần gấp
làm nhanh + đúng mk sẽ tick cho
Ta có: \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
Vậy GTNN của A = -1 khi x = 0 và y = 2
\(A=x^2+3\left|y-2\right|-1\)
Có \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow A\ge0+0-1=-1\)
Dấu '=" xảy ra khi MinA=-1\(\Leftrightarrow x=0;y=2\)
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
Bài này mik ko biết nhưng bạn có thể vào câu hỏi tương tư
gtnn là 1 khi \(2x+\frac{1}{3}\)=0
=>x=\(-\)\(\frac{1}{6}\)