K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)

2 tháng 8 2017

\(M=\sqrt{\frac{\left(a^2+2020\right)\left(b^2+2020\right)}{c^2+2020}}\)

\(=\sqrt{\frac{\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)}{c^2+ab+bc+ac}}\)

\(=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)}}\)

\(=a+b\) là 1 số hữu tỉ

=> M là 1 số hữu tỉ (đpcm)

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

23 tháng 9 2019

Câu hỏi của Phạm Quang Dương - Toán lớp 9 - Học toán với OnlineMath

10 tháng 6 2016

thay 1 bởi ab+bc+ca

ta có :Q=\(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

ta thấy \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

       \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

        \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> Q= \(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là một số hữu tỉ vì a,c,b là các số hữu tỉ

4 tháng 7 2016

Với ab + ac + bc = 1
Ta có :
a2+1=a2+ab+ac+bc=(a2+ab)+(ac+bc)

=a(a+b)+c(a+b)=(a+c)(a+b)

Tương tự, ta có:
b2+1=(b+a)(b+c) 
c2+1=(c+a)(c+b)

Do đó: 
(a2+1)(b2+1)(c2+1)=(a+c)(a+b)(b+c)(b+a)(c+a)(c+b)

=(a+b)2(a+c)2(b+c)2=|(a+b)(a+c)(b+c)|

Do a, b, c là số hữu tỷ, do đó :
|(a+b)(a+c)(b+c)| là số hữu tỷ. (đpcm)