Cho tam giác ABC, đường thẳng d cắt AB, AC và trung tuyến AM theo thứ tự tại E, F, N. Chứng minh \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{2AM}{AN}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CH
Cô Hoàng Huyền
Admin
VIP
9 tháng 2 2018
a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)
\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)
Vậy nên DE + DF = 2AM.
b) Theo định lý Ta let ta có:
\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
qua B và C kẻ đường // (d) cắt AM tại P & Q => BPCQ là hình bình hành => PM = QM
ta có AB/AE = AP/AN
AC/AF = AQ/AN
=> AB/AE + AC/AF = AP/AN + AQ/AN = ( AM - PM)/AN + ( AM + QM)/AN
= 2AM/AN ( do PM = QM)
=2AM/AN nha bạn^_^