K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

10 tháng 9 2018

đặt \(\sqrt[3]{2}\)=a \(\Rightarrow\)a3=2, ta có:

x=\(\frac{1}{a+a^2+a^3}\)=\(\frac{a-1}{a\cdot\left(a^3-1\right)}\)=\(\frac{a-1}{a}\)

y=\(\frac{6}{a^4-a^3+a^2}\)=\(\frac{6\cdot\left(a+1\right)}{a^2\left(a^3+1\right)}\)=\(\frac{2\left(a+1\right)}{a^2}\)=\(\sqrt[3]{2}\cdot\left(a+1\right)\)

THeo cách đặt thì tính được x,y. Sau đó thay vào B thì tính được bạn nhé

3 tháng 12 2019

Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)

7 tháng 9 2016

Đặt \(t=\sqrt[3]{2}\) và  

=> \(x=\frac{t^3}{2t+t^3+t^2}=\frac{t^2}{t^2+t+2}\)

=> \(y=\frac{3t^3}{2t-t^3+t^2}=\frac{3t^2}{t-t^2+2}\)

\(xy=\frac{3t^4}{\left(t+2+t^2\right)\left(t+2-t^2\right)}\)

\(x+y=\frac{t^2}{t^2+t+2}+\frac{3t^2}{t-t^2+2}=\frac{t^3-t^4+2t^2+3t^4+3t^3+6t^2}{\left(t^2+t+2\right)\left(t-t^2+2\right)}=\frac{2t^2\left(t^2+2t+4\right)}{\left(t^2+t+2\right)\left(t-t^2+2\right)}\)

Suy ra : \(\frac{xy}{x+y}=\frac{3t^4}{\left(t^2+t+2\right)\left(t+2-t^2\right)}:\frac{2t^2\left(t^2+2t+4\right)}{\left(t^2+t+2\right)\left(t-t^2+2\right)}\)

\(=\frac{3t^4}{2t^2\left(t^2+2t+4\right)}=\frac{3t^2}{2\left(t^2+2t+4\right)}=\frac{3\sqrt[3]{4}}{2\left(\sqrt[3]{4}+2\sqrt[3]{2}+4\right)}\)

 

10 tháng 11 2019

Đặt \(a=2^{\frac{1}{3}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{a}{a^2+a+1}\\y=\frac{a}{a^2-a+1}\end{cases}}\)

\(A{=xy(y^2-x^2)\\=xy(y+x)(y-x)\\=\dfrac{a^2}{a^4+a^2+1}\dfrac{2a^3+2a}{a^4+a^2+1}\dfrac{2a^2}{a^4+a^2+1}\\=\dfrac{8a^2(a^2+1)}{(a+1)^6}\\=\dfrac{8a^2(a^2+1)}{(a^3+3a^2+3a+1)^2}\\=\dfrac{8a^2(a^2+1)}{9(a^2+a+1)^2}}\)

Vì \(\left(a-1\right)\left(a^2+a+1\right)=a^3-1=1\). khi đó 

\(A=\dfrac{8}{9}a^2(a^2+1)(a-1)^2=\dfrac{8}{9}a^2(a^4-2a^3+a^2+a^2-2a+1)=\dfrac{8}{9}a^2(2a^2-3)=\dfrac{8}{9}(4a-3a^2)\)