Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(y=1-\frac{1}{10}=\frac{9}{10}\)
f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)\)
\(=x-y\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Đặt \(t=\sqrt[3]{2}\) và
=> \(x=\frac{t^3}{2t+t^3+t^2}=\frac{t^2}{t^2+t+2}\)
=> \(y=\frac{3t^3}{2t-t^3+t^2}=\frac{3t^2}{t-t^2+2}\)
\(xy=\frac{3t^4}{\left(t+2+t^2\right)\left(t+2-t^2\right)}\)
\(x+y=\frac{t^2}{t^2+t+2}+\frac{3t^2}{t-t^2+2}=\frac{t^3-t^4+2t^2+3t^4+3t^3+6t^2}{\left(t^2+t+2\right)\left(t-t^2+2\right)}=\frac{2t^2\left(t^2+2t+4\right)}{\left(t^2+t+2\right)\left(t-t^2+2\right)}\)
Suy ra : \(\frac{xy}{x+y}=\frac{3t^4}{\left(t^2+t+2\right)\left(t+2-t^2\right)}:\frac{2t^2\left(t^2+2t+4\right)}{\left(t^2+t+2\right)\left(t-t^2+2\right)}\)
\(=\frac{3t^4}{2t^2\left(t^2+2t+4\right)}=\frac{3t^2}{2\left(t^2+2t+4\right)}=\frac{3\sqrt[3]{4}}{2\left(\sqrt[3]{4}+2\sqrt[3]{2}+4\right)}\)