K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

a) hợp số

b)nguyên tố

c) hợp số

12 tháng 8 2015

a tận cùng là 0=> hợp số

1112111 chia hết cho 11 => hợp số

c vế 1 chia hết cho 7 , vế 2 chia hết cho 7 => hiệu chia hết cho 7 => hợp số

1 tháng 8 2017

a, là hợp số vì chia hết cho 11 và > 11

1 tháng 8 2017

b, là hợp số vì chia hết cho 3 và > 3

8 tháng 12 2020

câu a) 111....1 (2019 số 1) chia hết cho 11 vì có các chữ số giống nhau

câu b) tương tự nha

c) 1112111 chia hết cho 11011 ( dựa vào dấu hiệu nhận biết của các chữ số )

d) tương tự

8 tháng 12 2020

câu a,b đều chia hết cho 1, 11 và chính nó => hợp số

câu c chia hết cho 101 còn câu d chia hết chi 1111=> hợp số

câu e) -.- đang tắc

Bài 6: 

a: Là hợp số

b: Là hợp số

10 tháng 11 2022

c1

p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp

Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.

3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)

Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.

Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.

c2

a) 5 . 6 . 7  + 8 . 9 

ta có :

5 . 6 . 7 chia hết cho 3

8 . 9 chia hết cho 3

=> 5 . 6 . 7 + 8 . 9 chia hết cho 3   và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số

b 5 . 7 . 9 . 11 - 2 . 3 . 7

ta có :

5 . 7 . 9 . 11 chia hết cho 7

2 . 3 . 7 chia hết cho 7

=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số

c3

 

6 tháng 10 2016

a) 26.6101 + 1

= 64.(...6) + 1

= (...4) + 1

= (...5) chia hết cho 5, là hợp số

b) Vì 2001.2002.2003.2004.2005 chia hết cho 5; 10 chia hết cho 5

nên 2001.2002.2003.2004.2005 - 10 chia hết cho 5, là hợp số

c) Ta thấy: 1991.1992.1993.1994 có tận cùng là 4

=> 1991.1992.1993.1994 + 1 có tận cùng là 5, chia hết cho 5, là hợp số

d) Ta có: 

\(10\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}\equiv1\left(mod3\right)\) (1)

\(7\equiv1\left(mod3\right)\) (2)

Từ (1) và (2) \(\Rightarrow10^{100}-7⋮3\), là hợp số

e) Tổng các chữ số của 111...1 (2007 chữ số 1) là: 1 + 1 + 1 + ... + 1 = 2007 chia hết cho 3                                                      (2007 số 1)

=> 111...11 (2007 c/s 1) chia hết cho 3, là hợp số

f) Ta có: 1111...1 (2006 c/s 1)

= 1111...1000...0 + 1111...1

(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)

= 1111...1.1000...0 + 1111...1

(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)

= 1111...1.1000...01 chia hết cho 1111...1, là hợp số

(1003 c/s 1)(1002 c/s 0)             (1003 c/s 1)