Cho \(\Delta ABC\)có \(AB=AC\). Lấy I là trung điểm của BC. Trên cạnh BC lấy hai điểm M và N sao cho CN=BM.
a)C/m \(\widehat{ABI}=\widehat{ACI}\)và AI là tia p/g của \(\widehat{BAC}\)
b)C/m AM=AN
c)Qua B vẽ đường thẳng vuông góc với AB cắt AI tại K. C/m \(KC⊥AC\)
Chỉ cần làm giúp mk ý c) thôi nhé! Thanks!
Xét tam giác BKI và CKI
Ta có BI=CI; IK chung; KC=KB (Vì K nằm trên AI)
Suy ra Tam giác BKI=Tam giác CKI => Góc KBI=Góc KCI
Mà Góc ABI=Góc ACI (Vì tam giác ABC cân)
Suy ra: Góc ABI+Góc KBI=Góc ACI+Góc KIC= 900
=> KC vuông góc với AC
CM t/g ABK = t/g ACK => góc ABK = góc ACK => góc ACK = 90 độ => AC vuông góc với KC