Chứng minh rằng với mọi đa thức có hệ số hữu tỉ nhận \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là nghiệm đều chia hết cho\(x^2-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
Lấy 1 nghiệm là \(\sqrt{2}+\sqrt{3}\) và 1 nghiệm là biểu thức liên hợp với nó \(\sqrt{2}-\sqrt{3}\), tổng hai nghiệm là \(2\sqrt{2}\) và tích hai nghiệm là -1. Theo định lý Viet, hai số \(\sqrt{2}+\sqrt{3}\) và \(\sqrt{2}-\sqrt{3}\) là nghiệm của phương trình:
\(x^2-2\sqrt{2}x-1=0\)
Phương trình trên chưa phải là phương trình có hệ số hữu tỉ (vì \(2\sqrt{2}\) là số vô tỉ. Ta lại nhân cả hai vế của phương trình trên với \(x^2-1+2\sqrt{2}x\) ta được phương trình sau:
\(\left(x^2-1-2\sqrt{2}x\right)\left(x^2-1+2\sqrt{2}x\right)=0\)
Hay là:
\(\left(x^2-1\right)^2-8x^2=0\)
Đây là phương trình có các hệ số hữu tỉ và có 1 nghiệm là \(\sqrt{2}+\sqrt{3}\)