a (a+2)^2-(a+2)(a-2)
b (a+b)^2-(a-b)^2
c (3x+4)^2-10x-(x-4)(x+4)
Ai giúp mình rút gọn với mai nộp rồi :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)
\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)
\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)
\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)
\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)
\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)
b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1
a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..
\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)
\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)
\(=3x^4+10x^2+9.\)
\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)
\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)
\(=x^4-8x^2-8\)
b. Tính M = A(x) + B(x) ; N = A(x) - B(x)
\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)
\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)
\(=4x^4+2x^2+2\)
\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)
\(=3x^4+10x^2+9-x^4+8x^2+8\)
\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)
\(=2x^4+18x^2+17\)
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
a)(3x+4)2-10x-(x-4)(x+4)
9x2+24x+16-10x-x2+16
8x2+14x+32
b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)
(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)
(x2-1)(x2-4)(7x2+4)
(-3x2+4)(7x2+4)
-21x2-12x2+28x2+16
16-x2
a)(3x+4)2-10x-(x-4)(x+4)
9x2+24x+16-10x-x2+16
8x2+14x+32
b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)
(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)
(x2-1)(x2-4)(7x2+4)
(-3x2+4)(7x2+4)
-21x2-12x2+28x2+16
16-x2
\(a,\left(a+2\right)^2-\left(a+2\right)\left(a-2\right)\)
\(=a^2+4x+4-a^2+4\)
\(=4x+8\)
\(=4\left(x+2\right)\)
\(b,\left(a+b\right)^2-\left(a-b\right)^2\)
\(=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=4ab\)
\(c,\left(3x+4\right)^2-10x-\left(x+4\right)\left(x-4\right)\)
\(=9x^2+24x+16-10x-x^2+16\)
\(=8x^2+14x+32\)
\(=2\left(4x^2+7x+16\right)\)
thanks ban nha ^^