K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

\(a,\left(a+2\right)^2-\left(a+2\right)\left(a-2\right)\)

\(=a^2+4x+4-a^2+4\)

\(=4x+8\)

\(=4\left(x+2\right)\)

\(b,\left(a+b\right)^2-\left(a-b\right)^2\)

\(=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)

\(=a^2+2ab+b^2-a^2+2ab-b^2\)

\(=4ab\)

\(c,\left(3x+4\right)^2-10x-\left(x+4\right)\left(x-4\right)\)

\(=9x^2+24x+16-10x-x^2+16\)

\(=8x^2+14x+32\)

\(=2\left(4x^2+7x+16\right)\)

9 tháng 8 2017

thanks ban nha ^^

27 tháng 11 2018

\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)

\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)

\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)

\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)

\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)

b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1

5 tháng 7 2016

Các bạn cố gắng giúp mình nha . Mình xin chân thành cảm ơn 

17 tháng 1 2018

a)10+5^4*5=10+5^5

b)2^2*9^27*2=2^3*9^27

17 tháng 1 2018

10+5/4.5=15/20=3/4

2^2.9/27.2 = 2^2.9/ 3.9.2 = 2.1/3.1= 1/3

Sai đề bài rồi! 😋😴

11 tháng 4 2019

a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..

\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)

\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)

\(=3x^4+10x^2+9.\)

\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)

\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)

\(=x^4-8x^2-8\)

b. Tính M = A(x) + B(x) ; N = A(x) - B(x)

\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)

\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)

\(=4x^4+2x^2+2\)

\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)

\(=3x^4+10x^2+9-x^4+8x^2+8\)

\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)

\(=2x^4+18x^2+17\)

NV
22 tháng 3 2021

Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:

a.

\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)

NV
22 tháng 3 2021

c.

\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)

\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)

d.

\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)

25 tháng 8 2016

a)(3x+4)2-10x-(x-4)(x+4)

    9x2+24x+16-10x-x2+16

    8x2+14x+32

b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)

   (x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)

    (x2-1)(x2-4)(7x2+4)

    (-3x2+4)(7x2+4)

    -21x2-12x2+28x2+16

    16-x2

22 tháng 7 2018

a)(3x+4)2-10x-(x-4)(x+4)

9x2+24x+16-10x-x2+16

8x2+14x+32

b)(x+1)(x-2)(x2+1)(x+2)(x-1)(x2+4)

(x+1)(x-1)(x+2)(x-2)(x2+1)(x2+4)

(x2-1)(x2-4)(7x2+4)

(-3x2+4)(7x2+4)

-21x2-12x2+28x2+16

16-x2

15 tháng 3 2019

sáng mai chị làm cho