cho tam giác abc vuông tại a có đường phân giác của góc abc cắt ac tại e a,tam giác abe bằng tam giác hbe b,be là đường trung trực của đoạn thẳng ah c,ec nhỏ hơn ae
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)
BE chung
^ABE = ^HBE (BE là phân giác ^ABC)
=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)
b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)
=> E thuộc đường trung trực của AH (1)
Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)
=> B thuộc đường trung trực của AH (2)
Từ (1) và (2) => BE là đường trung trực của AH (đpcm)
c) Ta có: ^BEK = ^BEA + ^AEK
^BEC = ^BEH + ^HEC
Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)
^AEK = ^HEC (2 góc đối đỉnh)
=> ^BEK = ^BEC
Xét tam giác BEK và tam giác BEC:
^BEK = ^BEC (cmt)
^KBE = ^CBE (BE là phân giác ^ABC)
BE chung
=> tam giác BEK = tam giác BEC (g - c - g)
=> EK = EC (cặp cạnh tương ứng)
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
a, Xét \(\Delta ABE\)và \(\Delta HBE\)có :
\(\widehat{BAE}=\widehat{BHE}=90^o\)(gt)
\(\widehat{ABE}=\widehat{HBE}\)\(\left(\text{vì BE là tia phân giác }\widehat{ABC}\right)\)
\(BE\)\(\text{là cạnh huyền chung }\)
\(\Rightarrow\)\(\Delta ABE\)= \(\Delta HBE\) \(\left(ch+gn\right)\)
Vì \(\Delta ABE=\text{}\text{}\Delta HBE\)(câu a)
=> \(AB=HB\)(2 cạnh tương ứng)
\(AE=HE\) (2 cạnh tương ứng)
=> BE là đường trung trực của đoạn thẳng AH
a) Vì ΔABC vuông tại A (gt)
⇒ ∠BAE=900
⇒ ΔBAE vuông tại A
Vì EH⊥BC (gt)
⇒ ΔBEH và ΔCHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có:
Cạnh BE chung
∠BEA=∠BEH (BE là tia phân giác ∠ABC)
⇒ ΔBAE=ΔBHE (cạnh huyền - góc nhọn)
Vậy ΔBAE=ΔBHE
b) Vì ΔBAE=ΔBHE (cmt)
⇒ BA=BE (2cạnh tương ứng)
⇒ AE=HE (2cạnh tương ứng) (1)
⇒ B,E thuộc đường trung trực của AH
⇒ Đường thẳng BE thuộc đường trung trực của ẠH
Vậy đường thẳng BE thuộc đường trung trực của ẠH
c) Xét tam giác EHC vuông tại E có:
EC>EH (DC là cạnh huyền) (2)
Từ (1) và (2) ⇒ EC>AE
Vậy EC>AE