cm:
(x-y)^3 +( y-z )^3 +( z-x )^3 chia hết ( x-y )*(y-z) *(z-x)
GIÚP MK NHA !MK TICK CHO KB NHA! THANK YOU ^_^ <3:))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy theo đề của mình nhé !
* trước tiên ta xét trường hợp x + y + z = 0, ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=0\Rightarrow x=y=z=0\)
* xét x + y + z ≠ 0, ta có :
Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{x}{x+y-3}=\dfrac{x+y+z}{y+z+x+z+x+y}=\)
\(\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)
⇒ x + y + z = 1/2 và:
+ 2x = y + z + 1 = 1/2 - x + 1 ⇒ x = 1/2
+ 2y = x + z + 2 = 1/2 - y + 2 ⇒ y = 1/2
+ z = 1/2 - (x + y) = 1/2 - 1 = -1/2
Vậy có cặp (x,y,z) thỏa mãn là : (0, 0, 0) và (1/2,1/2,-1/2)
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
a) ADTCDTSBN
có: \(\frac{x}{12}=\frac{y}{13}=\frac{z}{15}=\frac{x+y+z}{12+13+15}=\frac{160}{40}=4\)
=> x/12 = 4 => x = 48
...
b) ta có: \(x=\frac{y}{6}=\frac{z}{3}=\frac{2x}{2}=\frac{3y}{18}=\frac{4z}{12}\)
ADTCDTSBN
có: \(\frac{2x}{2}=\frac{3y}{18}=\frac{4z}{12}=\frac{2x-3y+4z}{2-18+12}=\frac{16}{-4}=-4\)
=>...
c) ta có: \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{3}=\frac{2x}{4}=\frac{3y}{-9}=\frac{2z}{8}\)
ADTCTDBN
có: \(\frac{2x}{4}=\frac{3y}{-9}=\frac{2z}{8}=\frac{2x+3y+2z}{4-9+8}=\frac{1}{3}\)
=>...
a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)
Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)
b, Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)
Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)
Áp dụng hàm đẳng thức vào biểu thức trên ta được:
(x-y)^3 +( y-z )^3 +( z-x )^3
=(x^3-3.x^2.y+3.x.y^2-y^3)+(y^3-3.y^2.z+3.y.z^2-z^3)+(z^3-3.z^2.x+3.z.x^2-x^3)
=-3.x^2.y+3.x.y^2-3.y^2.z+3.y.z^2-3.z^2.x+3.z.x^2
=3.(.x^2.y+x.y^2-y^2.z+y.z^2-z^2.x+z.x^2)..
đén đây thì mình chịu, mong bạn thông cảm cho mình nha!(~~__~~)