Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
Ta có: \(bc(y-z)^{2}+ac(x-z)^{2}+ab(x-y)^{2}\)
\(=(abx^2+cax^2)+(bcy^2+aby^2)+(caz^2+bcz^2)-2(ax.by+by.cz+cz.ax)\)
\(=ax^2(2017-a)+by^2(2017-b)+cz^2(2017-c)-2(ax.by+by.cz+cz.ax)\)
\(=2017(ax^2+by^2+cz^2)-[a^2x^2+b^2y^2+c^2z^2+2(ax.by+by.cz+cz.ax)]\)
\(=2017(ax^2+by^2+cz^2)-(ax+by+cz)^2\)
\(=2017(ax^2+by^2+cz^2)\)
Vậy \(P=\dfrac{1}{2017}\)
bài của bạn Phạm Quốc Cường phải là 2007 chứ không phải 2017
cái này là bđt bunhia thì fai bn mở sách ra tham khảo đi
đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc
giai ho minh di