K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

tìm GTLN trừ GTNN hay GTLN riêng và GTNN riêng

31 tháng 7 2017

riêng nha bạn

22 tháng 8 2020

bạn có thể dùng bđt phụ này để chứng minh 

\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

17 tháng 4 2022

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

17 tháng 4 2022

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

14 tháng 8 2020

+) \(x+y+xy=8\Leftrightarrow\left(x+1\right)\left(y+1\right)=9\)

+) Đặt: \(a=\sqrt{x+1};b=\sqrt{y+1}\)

+) \(P=\frac{\sqrt{x+1}+\sqrt{y+1}}{\left(x+1\right)\left(y+1\right)-\left(x+1\right)-\left(y+1\right)+2}=\frac{a+b}{11-a^2-b^2}\)

\(\ge\frac{2\sqrt{ab}}{11-2ab}=\frac{2\sqrt{3}}{11-2\cdot3}=\frac{2\sqrt{3}}{5}\)

Dấu = xảy ra khi x = y = 2

+) \(P^2=\frac{x+y+8}{\left(xy+1\right)^2}=\frac{16-xy}{\left(xy+1\right)^2}\le\frac{16}{1}=4\)

\(\Rightarrow P\le4\)

Dấu = xảy ra khi \(\orbr{\begin{cases}x=8;y=0\\x=0;y=8\end{cases}}\)