K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Để cái hình vs tên đại diện như hâm ý

19 tháng 2 2018

Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à

26 tháng 9 2021

undefined

Gọi \(I \) là trung điểm của \(EC \).

Xét \(\bigtriangleup DEC \) vuông tại \(D \) có: \(DI\) là đường trung tuyến (\(I \) là trung điểm của \(EC \))

\(\Rightarrow DI=IC\) \(\Rightarrow \bigtriangleup DIC\) cân tại \(D\) \(\Rightarrow \widehat{D_1}=\widehat{C_2}\) (tính chất tam giác cân).

Ta có: \(\begin{cases} \widehat{C_1}=​​\widehat{C_2}\\ \widehat{D_1}=\widehat{C_2} (cmt) \end{cases} \Rightarrow \widehat{D_1}=\widehat{C_1} (=\widehat{C_2})\) . Mà chúng ở vị trí so le trong \(\Rightarrow DI//AC\) \(\Rightarrow \widehat{DIB}=\widehat{ACI}\) (đồng vị)\(\Rightarrow \widehat{DIB}=\widehat{DBI}(=\widehat{ACI})\)

\(​​​​\Rightarrow \bigtriangleup DBI\) cân tại \(D \) \(​​​​\Rightarrow BD=DI=\dfrac{1}{2}EC\) (đpcm).

a: Xét ΔCDF vuông tại D và ΔCDK vuông tại D có

CD chung

góc FCD=góc KCD
=>ΔCDF=ΔCDK

b: Xét ΔEDC có góc EDC=góc ECD

nên ΔECD cân tại E

=>EC=ED

=>góc ECD=góc EDC

=>góc EDK=góc EKD

=>ΔKED cân tại E

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

Do đó: ΔABD=ΔACD

nên DB=DC

b: BE⊥AC

DC⊥AC
Do đó: BE//DC

c: \(\widehat{EBC}=\widehat{DCB}\)

mà \(\widehat{DCB}=\widehat{DBC}\)

nên \(\widehat{EBC}=\widehat{DBC}\)

hay BC là tia phân giác của góc EBD

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AD vuông góc BC