K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCDF vuông tại D và ΔCDK vuông tại D có

CD chung

góc FCD=góc KCD
=>ΔCDF=ΔCDK

b: Xét ΔEDC có góc EDC=góc ECD

nên ΔECD cân tại E

=>EC=ED

=>góc ECD=góc EDC

=>góc EDK=góc EKD

=>ΔKED cân tại E

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

Do đó: ΔABD=ΔACD

nên DB=DC

b: BE⊥AC

DC⊥AC
Do đó: BE//DC

c: \(\widehat{EBC}=\widehat{DCB}\)

mà \(\widehat{DCB}=\widehat{DBC}\)

nên \(\widehat{EBC}=\widehat{DBC}\)

hay BC là tia phân giác của góc EBD

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AD vuông góc BC

20 tháng 12 2021

bạn nào giúp mình với gấp lắm rồi =((

20 tháng 12 2021

Câu C) CF=2BD nha

a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

Xét ΔDBC và ΔECB có 

\(\widehat{DBC}=\widehat{ECB}\)

 BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đo: ΔDBC=ΔECB

b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)

nên ΔBEF cân tại E

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980