chứng tỏ rằng:
a) 0,(37) + 0,(67) =1
b) 0,(33) . 3 = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 0,(37)+0,(62) = 1
Có 0.(37)=\(\frac{37}{99}\)và 0.(62) = \(\frac{62}{99}\)
\(\frac{37}{99}\)+ \(\frac{62}{99}\)= 1
\(\Rightarrow0,\left(37\right)+0.\left(62\right)=1\)
b)\(0,\left(37\right)\times3=1\)
Có: \(0,\left(37\right)=\frac{37}{99}\)
\(\frac{37}{99}\times3=1\)
\(\Rightarrow0\left(37\right)\times3=1\)
\(0,\left(37\right)+0,\left(62\right)=0,\left(99\right)\)
Theo quy ước làm tròn số ta dược :
\(0,\left(99\right)\approx1\) (đpcm)
b) Làm tương tự câu a) ta có :
\(0,\left(33\right).3=0,\left(99\right)\approx1\) (đpcm)
\(0,\left(37\right)+0,\left(62\right)=\frac{37}{99}+\frac{62}{99}=\frac{99}{99}=1\)
\(0,\left(33\right).3=\frac{33}{99}.3=\frac{1}{3}.3=\frac{3}{3}=1\)
a, 0,(37)+0,(62)=0,(99)
Theo quy ước làm tròn số ta dược :
0,\left(99\right)\approx10,(99)≈1 (đpcm)
b) Làm tương tự câu a) ta có :
0,\left(33\right).3=0,\left(99\right)\approx10,(33).3=0,(99)≈1 (đpcm)
a) Ta có:
0,\left(37\right)=\frac{37}{99}0,(37)=9937 ; 0,\left(62\right)=\frac{62}{99}0,(62)=9962
=> 0,\left(37\right)+0,\left(62\right)=\frac{37}{99}+\frac{62}{99}=\frac{99}{99}=10,(37)+0,(62)=9937+9962=9999=1
b) Ta có:
0,\left(33\right)=\frac{33}{99}0,(33)=9933
=> 0,\left(33\right).3=\frac{33}{99}.3=\frac{1}{3}.3=10,(33).3=9933.3=31.3=1
a. Đổi : \(0,\left(37\right)=\dfrac{37}{99}\) ; \(0,\left(62\right)=\dfrac{62}{99}\)
\(\Rightarrow\dfrac{37}{99}+\dfrac{62}{99}=1\) (đpcm)
b. Đổi : \(0,\left(33\right)=\dfrac{33}{99}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{1}{3}.3=1\) (đpcm)
\(a)0,\left(37\right)+0,\left(62\right)=0,\left(99\right)\)
Theo quy ước làm tròn số ta được:
\(0,\left(99\right)\approx1\left(đpcm\right)\)
\(b)0,\left(33\right).3=0,\left(99\right)\)
Theo quy ước làm tròn số ta được:
\(0,\left(99\right)\approx1\left(đpcm\right)\)
Chúc bạn học tốt!
a)ta có: 0, (37) + 0, (62) = 1
\(\Rightarrow\)\(\dfrac{37}{99}+\dfrac{62}{99}=1\left(ĐPCM\right)\)
b)ta có: 0, (33).3=1
\(\Rightarrow\)\(\dfrac{1}{3}.3=1\left(ĐPCM\right)\)
a) Ta có:
0, (37) = 0, (01) . 37 = \(\dfrac{1}{99}\) . 37 = \(\dfrac{37}{99}\)
0, (62) = 0, (01) . 62 = \(\dfrac{1}{99}\) . 62 = \(\dfrac{62}{99}\)
\(\Rightarrow\)0, (37) + 0, (62) = \(\dfrac{37}{99}\) + \(\dfrac{62}{99}\) = \(\dfrac{99}{99}\)= 1
Vậy 0, (37) + 0, (62) = 1 (ĐPCM)
b) Ta có:
0, (33) = 0, (01) . 33 = \(\dfrac{1}{99}\) . 33 = \(\dfrac{33}{99}\)
\(\Rightarrow\)0, (33) . 3 = \(\dfrac{33}{99}\) . 3 =\(\dfrac{99}{99}\) = 1
Vậy 0, (33) . 3 = 1 (ĐPCM)
tick mk nhé
1)
a)\(0,\left(32\right)+0,\left(67\right)\)
\(=0,\left(01\right).32+0,\left(01\right).67\)
\(=0,\left(01\right).\left(32+67\right)\)
\(=\frac{1}{99}.99\)
\(=1\left(đpcm\right)\)
b)\(0,\left(33\right).3\)
\(=0,\left(01\right).33.3\)
\(=\frac{1}{99}.33.3\)
\(=\frac{33}{99}.3\)
\(=\frac{99}{99}\)
\(=1\left(đpcm\right)\)
2)\(0,\left(12\right):1,\left(6\right)=x:0,\left(3\right)\)
\(\left[\left(0,01\right).12\right]:\left[1+0,\left(6\right)\right]=x:\left[0,\left(1\right).3\right]\)
\(\left(\frac{1}{99}.12\right):\left[1+0,\left(1\right).6\right]=x:\left(\frac{1}{9}.3\right)\)
\(\frac{4}{33}:\left[1+\frac{1}{9}.6\right]=x:\frac{1}{3}\)
\(\frac{4}{33}:\left[1+\frac{2}{3}\right]=x.3\)
\(3x=\frac{4}{33}:\frac{5}{3}\)
\(3x=\frac{4}{33}\cdot\frac{3}{5}\)
\(3x=\frac{4}{55}\)
\(x=\frac{4}{55}:3\)
\(x=\frac{4}{55}\cdot\frac{1}{3}\)
\(x=\frac{4}{165}\)