tìm a,b thuộc Z để :
\(\frac{a}{3}+\frac{1}{b}=\frac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
c) để A>1/3
\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)
\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)
\(\Rightarrow\sqrt{x}+3>3\)
\(\Rightarrow x>0\)
a) Tự tìm ĐKXĐ.
\(P=\frac{-3}{2}.\frac{x+9+\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}=\frac{3}{2}.\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}=\frac{9\sqrt{x}}{4\sqrt{x}+8}\)
ĐKCĐ: \(x\ge0;x\ne9,x\ne4\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ \)
\(=\left(\frac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}-1\right):\left(\frac{\left(3-\sqrt{x}\right).\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x+3}\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=-\frac{3}{\sqrt{x}+3}:\left(-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)=-\frac{3}{\sqrt{x}+3}:\frac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}=\frac{3}{\sqrt{x}-2}\)
b, \(A\inℤ\Leftrightarrow\frac{3}{\sqrt{x}-2}\inℤ\)
Nếu x không là số chính phương thì \(\sqrt{x}\)là số vô tỉ thì \(\sqrt{x}-2\)là số vô tỉ\(\Rightarrow A=\frac{3}{\sqrt{x}-2}\)là số vô tỉ
Nếu x là số chính phương thì \(\sqrt{x}\)là số nguyên thì \(\sqrt{x}-2\inℤ\Rightarrow\sqrt{x}-2\inƯ\left(3\right)\Rightarrow\sqrt{x}-2\in\left\{\pm1;\pm3\right\}\Rightarrow\sqrt{x}\in\left\{1;3;5\right\}\)\(\Rightarrow x\in\left\{1;9;25\right\}\)
Mà theo ĐKXĐ có x khác 9 => \(x\in\left\{1,25\right\}\)
a. ĐK \(\hept{\begin{cases}a\ge0\\a\ne4\\a\ne9\end{cases}}\)
P=\(\frac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\frac{2\sqrt{a}-9-a+9+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)
b. P = \(\frac{\sqrt{a}+1}{\sqrt{a}-3}=1+\frac{4}{\sqrt{a}-3}\)
P nguyên \(\sqrt{a}-3\inƯ\left(4\right)\Rightarrow\sqrt{a}-3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{a}\in\left\{1;2;4;5;7\right\}\Rightarrow a\in\left\{1;4;16;25;49\right\}\)
c. \(P< 1\Rightarrow P-1< 0\Rightarrow\frac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\Rightarrow\frac{4}{\sqrt{a}-3}< 0\)
\(\Rightarrow0\le a< 9\)và \(a\ne4\)
a) \(ĐKXĐ:x\ne4;x\ne9\)
b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 2 | \(\sqrt{2}\) | \(\sqrt{5}\) | \(\sqrt{1}\) | \(\sqrt{7}\) | \(\varnothing\) |
Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }
\(\frac{a}{3}+\frac{1}{b}=\frac{1}{9}\)
\(\frac{1}{b}=\frac{1}{9}-\frac{a}{3}\)
\(\frac{1}{b}=\frac{1}{9}-\frac{3a}{9}\)
\(\frac{1}{b}=\frac{1-3a}{9}\)
\(\Rightarrow1.9=b.\left(1-3a\right)\)
\(\Rightarrow9=b.\left(1-3a\right)\)
Lập bảng ta có :
Vậy ...
a/3 + 1/b = 1/9
1/b = 1/9-a/3
1/b = 1/9 -3a/9
1/b = 1-3a/9
9/9b=(1-3a)b/9b
=>(1-3a)b=9
=>1-3a thuộc ước của 9
mà 3a chia hết cho 3, 1 chia cho 3 dư 1
suy ra 1-3a chia cho 3 dư 1
vậy 1-3a =1
=>3a=1-1=0
=>a=0
vì 1-3a =1
=> b=9 :1 = 9
vậy a=0 , b=9