Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
tìm n nhỏ nhất nha
\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản
\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản
\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản
nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11
nên: n+2 là số nguyên tố lớn nhất lớn hơn 11
=> n+2=13=> n=11
a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\).
Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau
Tương tự ta có : 8 và (n+2) NTCN
9 và(n+2) NTCN
10 và (n+2) NTCN
11 và (n+2) NTCN
Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11
Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1
Vậy n + 2= 13 => n = 11
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
1.
a. Gọi p là một ước chung của 12n + 1 và 30n + 2. Ta có:
12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) - 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d. Vậy d =1 hoặc d = -1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) \(< 1\)
ko biết, bài này giải được mà bấm máy tinh thì mỏi tay lắm
\(\frac{a}{3}+\frac{1}{b}=\frac{1}{9}\)
\(\frac{1}{b}=\frac{1}{9}-\frac{a}{3}\)
\(\frac{1}{b}=\frac{1}{9}-\frac{3a}{9}\)
\(\frac{1}{b}=\frac{1-3a}{9}\)
\(\Rightarrow1.9=b.\left(1-3a\right)\)
\(\Rightarrow9=b.\left(1-3a\right)\)
Lập bảng ta có :
Vậy ...
a/3 + 1/b = 1/9
1/b = 1/9-a/3
1/b = 1/9 -3a/9
1/b = 1-3a/9
9/9b=(1-3a)b/9b
=>(1-3a)b=9
=>1-3a thuộc ước của 9
mà 3a chia hết cho 3, 1 chia cho 3 dư 1
suy ra 1-3a chia cho 3 dư 1
vậy 1-3a =1
=>3a=1-1=0
=>a=0
vì 1-3a =1
=> b=9 :1 = 9
vậy a=0 , b=9