Thực hiện phép tính:
\((\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968})\times(\frac{1}{3}-\frac{1}{4}-\frac{1}{12})\)
GIÚP MÌNH VỚI Ạ. MÌNH ĐANG CẦN GẤP!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)
\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)
b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)
\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)
\(=\frac{1}{x^3}\)
Bài 1:
a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)
b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)
c: Đề thiếu rồi bạn
Sửa đề:
\(\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{4-3-1}{12}\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{0}{12}\)
\(=0\)
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(\Rightarrow D=\frac{1}{2012}\)
DK \(3+2x\ne0;3-2x\ne0\Leftrightarrow x\ne\left\{+-\frac{3}{2}\right\}\)
\(\left(\frac{3-2x+\left(3+2x\right)}{\left(3+2x\right)\left(3-2x\right)}\right).\frac{\left(3+2x\right)}{1}\)\(=\left(\frac{6}{\left(3+2x\right)\left(3-2x\right)}\right).\left(3+2x\right)\)\(=\frac{6}{\left(3-2x\right)}\)
\(=\frac{\left(3-2x\right)+\left(3+2x\right)}{\left(3+2x\right)\left(3-2x\right)}.\left(3+2x\right)\)
\(=\frac{6}{3-2x}\)
=(1975/1976+2010/2011+1963/1968)x(4/12-3/12-1/12)
=(1975/1976+2010/2011+1963/1968)x0
=0