Mọi người chỉ mình câu 3b vs 4 với cảm ơn mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em ơi chưa có bài em nhé, em chưa tải bài lên lám sao mình giúp được
Bài 3:
b: Ta có: \(\sqrt{x^2-2x+1}=\left|x-2\right|\)
\(\Leftrightarrow\left|x-1\right|=\left|x-2\right|\)
\(\Leftrightarrow x-1=2-x\)
\(\Leftrightarrow2x=3\)
hay \(x=\dfrac{3}{2}\)
Bài 4: ĐK: x>0
a) \(B=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{x}\left[\left(\sqrt{x}\right)^3+1\right]}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)
\(\Leftrightarrow B=\sqrt{x}.\left(\sqrt{x}+1\right)-2\sqrt{x}=x+\sqrt{x}-2\sqrt{x}\)
\(\Leftrightarrow B=x-\sqrt{x}\)
Vậy với x>0 thì \(B=x-\sqrt{x}\)
b) Ta có: \(B=2\)
\(\Leftrightarrow x-\sqrt{x}=2\)
\(\Leftrightarrow x-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}.\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
Do \(\sqrt{x}+1>0\) nên, ta suy ra:
\(\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\) \(\left(TMĐK\right)\)
Vậy \(x=4\) thì \(B=2\)
Để làm dạng này , bạn làm như sau :
Vì bạn biết 1 giờ = 60 phút; 1 phút =60 giây nên là
Trước hết bạn lấy số 0,8325 (số chỉ giờ) nhân 60 nhé = 49,95
Bạn lấy phần nguyên của nó trước dấu phẩy là 49 , điền vảo chỗ chấm trước phút.
Cái phần thập phân sau dấu phẩy là 0,95 bạn tiếp tục nhân 60 = 57.
Bạn điền 57 vào phần chỗ chấm trước giây.
Vậy 0,8325 giờ=49 phút 57 giây
Câu 3:
2: Xét tứ giác OKEH có
\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)
Do đó: OKEH là hình chữ nhật
mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)
nên OKEH là hình vuông
18.\(\)\(=>I1=\dfrac{U}{R1}=\dfrac{16}{4R2}=\dfrac{4}{R2}A,\)
\(=>I2=\dfrac{U}{R2}=\dfrac{16}{R2}\left(A\right)\)
\(=>I2=I1+6< =>\dfrac{16}{R2}=\dfrac{4}{R2}+6< =>R2=2\left(ôm\right)\)
\(=>I1=\dfrac{4}{2}=2A,=>I2=2+6=8A\)
\(=>R1=4R2=8\left(ôm\right)\)
19
\(I2=1,5I1< =>\dfrac{U}{R2}=\dfrac{1,5U}{R1}=>\dfrac{1}{R2}=\dfrac{1,5}{R1}\)
\(< =>\dfrac{1}{R2}=\dfrac{1,5}{R2+5}=>R2=10\left(ôm\right)=>R1=R2+5=15\left(ôm\right)\)
Tam giác ABC vuông tại A có AM là trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow BC=2AM=50\left(m\right)\)
a. Áp dụng định lý Pitago:
\(AB=\sqrt{BC^2-AC^2}=30\left(m\right)\)
b. Kẻ \(MH\perp AC\Rightarrow MH||AB\) (cùng vuông góc AC)
Mà M là trung điểm BC \(\Rightarrow MH\) là đường trung bình tam giác ABC
\(\Rightarrow MH=\dfrac{1}{2}AB=15\left(m\right)\)
\(\Rightarrow S_{AMC}=\dfrac{1}{2}MH.AC=\dfrac{1}{2}.15.40=300\left(m^2\right)\)
Bài 3:
a) Xét ΔADB và ΔEDC có
\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)
\(\widehat{BAD}=\widehat{CED}\)(hai góc so le trong, AB//CE)
Do đó: ΔADB\(\sim\)ΔEDC(g-g)
Bài 3:
b) Ta có: \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
mà \(\widehat{BAD}=\widehat{CED}\)(hai góc so le trong, AB//CE)
nên \(\widehat{CAD}=\widehat{CED}\)
hay \(\widehat{CAE}=\widehat{CEA}\)
Xét ΔACE có \(\widehat{CAE}=\widehat{CEA}\)(cmt)
nên ΔCAE cân tại C(Định lí đảo của tam giác cân)
Suy ra: CA=CE(hai cạnh bên)
mà CA=20cm(gt)
nên CE=20cm
Ta có: ΔADB\(\sim\)ΔEDC(cmt)
nên \(\dfrac{AD}{DE}=\dfrac{AB}{EC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{DE}=\dfrac{15}{20}=\dfrac{3}{4}\)