4x^3 + 15=47
4.2^x - 3 = 125
tìm x nhe mấy bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 bạn tự là nhé dễ lắm :))
Bài 2 :
Ta có :
\(4x-15=-75-x\)
\(\Leftrightarrow\)\(4x+x=-75+15\)
\(\Leftrightarrow\)\(5x=-60\)
\(\Leftrightarrow\)\(x=\frac{-60}{5}\)
\(\Leftrightarrow\)\(x=-12\)
Bài 3 :
Ta có :
\(12⋮\left(x-3\right)\)\(\Rightarrow\)\(\left(x-3\right)\inƯ\left(12\right)\)
Mà \(Ư\left(12\right)=\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
Suy ra : ( lập bảng )
\(x-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(4\) | \(-4\) | \(6\) | \(-6\) | \(12\) | \(-12\) |
\(x\) | \(4\) | \(2\) | \(5\) | \(1\) | \(6\) | \(0\) | \(7\) | \(-1\) | \(9\) | \(-3\) | \(15\) | \(-9\) |
Vậy \(x\in\left\{4;2;5;1;6;0;7;-1;9;-3;15;-9\right\}\)
Chúc bạn học tốt
\(x^3+4x^2+4x+3\)
\(=\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
a) (x-3).(y+5) = 11 = 1.11 = (-1).(-11)
TH1: x - 3 = 1 => x = 4
y + 5 = 11 => y = 6
TH2: x - 3 = 11 => x = 14
y+5=1 => y = -4
...
bn tự lm típ nhé!
b) |x-1| +|3+y| = 0
=> |x-1| = 0 =>x-1 = 0 => x = 1
|3+y| = 0 => 3+y = 0=> y = - 3
c) ta có: 4x+3 chia hết cho x - 1
=> 4x -4+7 chia hế cho x - 1
4.(x-1) + 7 chia hết cho x - 1
mà 4.(x-1) chia hết cho x - 1
=> 7 chia hết cho x - 1
=> x - 1 thuộc Ư(7)={1;-1;7;-7}
...
rùi bn lập bảng xét giá trị hộ mk nha!!
Cái này chắc là đề THCS chứ không phải toán lớp 2 bạn à. !! >_<
1) Ta có: \(4x^2-1=\left(2x+1\right).\left(3x-5\right)\)
\(\Leftrightarrow\left(2x+1\right).\left(2x-1\right)-\left(2x+1\right).\left(3x-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right).\left[\left(2x-1\right)-\left(3x-5\right)\right]=0\)
\(\Leftrightarrow\left(2x+1\right).\left(2x-1-3x+5\right)=0\)
\(\Leftrightarrow\left(2x+1\right).\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\-x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=4\)
2) Ta có: \(\left(x+1\right)^2=4.\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-\left[2.\left(x-1\right)\right]^2=0\)
\(\Leftrightarrow\left[\left(x+1\right)+2.\left(x-1\right)\right].\left[\left(x+1\right)-2.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1+2x-2\right).\left(x+1-2x+2\right)=0\)
\(\Leftrightarrow\left(3x-1\right).\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(TM\right)\\x=3\left(TM\right)\end{matrix}\right.\)
Vậy \(x=\frac{1}{3}\) hoặc \(x=3\)
3) Ta có: \(2x^3+5x^2-3x=0\)
\(\Leftrightarrow x.\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x.\left(2x^2-x+6x-3\right)=0\)
\(\Leftrightarrow x.\left[x.\left(2x-1\right)+3.\left(2x-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x+3\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(TM\right)\\x=-\frac{1}{2}\left(TM\right)\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=-3\) hoặc \(x=-\frac{1}{2}\)
4) Ta có: \(2x=3x-2\)
\(\Leftrightarrow2x-3x=-2\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(TM\right)\)
Vậy \(x=2\)
5) Ta có: \(x+15=3x-1\)
\(\Leftrightarrow x-3x=-1-15\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(TM\right)\)
Vậy \(x=8\)
6) Ta có: \(2-x=0,5x-4\)
\(\Leftrightarrow-x-0,5x=-4-2\)
\(\Leftrightarrow-1,5x=-6\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy \(x=4\)
1) 4x2-1=(2x+1)(3x-5)
<=> (2x-1)(2x+1)-(2x+1)(3x-5)=0
<=> (2x+1)(2x-1-3x+5)=0
<=> (2x+1)(4-x)=0
<=>\([^{2x+1=0}_{4-x=0}< =>[^{2x=-1}_{x=4}< =>[^{x=\frac{-1}{2}}_{x=4}\)
2) (x+1)2= 4(x2-2x+1)
<=> x2+2x+1-4(x2-2x+1)=0
<=> x2+2x+1-4x2+8x-4=0
<=> -3x2+10x-3=0
<=> -3x2+x+9x-3=0
<=> -x(3x-1)+3(3x-1)=0
<=> (3x-1)(3-x)=0
<=> \([^{3x-1=0}_{3-x=0}< =>[^{3x=1}_{x=3}< =>[^{x=\frac{1}{3}}_{x=3}\)
3) 2x3+5x2-3x=0
<=> 2x(x2+\(\frac{5}{2}x-\frac{3}{2})=0\)
<=> 2x\(\left[x^2+2.\frac{5}{4}x+\frac{25}{16}-\left(\frac{25}{16}+\frac{3}{2}\right)\right]=0\)
<=> 2x\(\left[\left(x+\frac{5}{4}\right)^2-\frac{49}{16}\right]=0\)
<=> 2x\(\left(x+\frac{5}{4}-\frac{7}{4}\right)\left(x+\frac{5}{4}+\frac{7}{4}\right)=0\)
<=> x\(\left(x-\frac{1}{2}\right)\left(x+3\right)=0\)
<=>\(\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-3\end{matrix}\right.\)
4) 2x=3x-2
<=> 2x-3x=-2
<=> -x=-2
<=> x=2
5) x+15=3x-1
<=> x-3x=1-15
<=> -2x=-14
<=> x=-14:-2
<=> x=7
6) 2-x=0,5x-4
<=> -x-0,5x=-4-2
<=> -1,5x=-6
<=> x= -6: -1,5
<=> x=4
học tốt nghen
3x-2-19=62
=> 3x-2=62+19
=> 3x-2=81
=> 3x-2=34
=> x-2=4
=> x=4+2
=> x=6
10.3x=3117+3115
=> 10.3x=3115.(32+1)
=> 10.3x=3115.(9+1)
=> 3x.10=3115.10
=> 3x=3115
=> x=115
2448-(5x+48)=2000
=> 5x+48=2448-2000
=> 5x+48=448
=> 5x=448-48
=> 5x=400
=> x=400:5
=> x=80
1)\(3^{x-2}=62+19=81=3^4\)
=> x- 2 = 4
=> x = 6
2) \(2448-\left(5x+48\right)=2000\)
5x + 48 = 448
5x = 448 - 48
5x = 400
x = 80
3) \(10.3^x=3^{115}\left(3^2+1\right)=3^{115}.10\)
=> x =115
1. 4x2 + 4x + 2 = (4x2 + 4x + 1) + 1 = (2x + 1)2 + 1
Có: (2x+1)2 ≥ 0 ∀x => (2x+1)2 + 1 ≥ 1 > 0 (đpcm)
3. -x2 + 4x - 5 = -(x2 - 4x + 4) - 1 = -(x - 2)^2 - 1
Có: -(x-2)^2 ≤ 0 => -(x-2)^2 -1 ≤ - 1 < 0 (đpcm)
7. (x+2)(x-5) + 15 = x2 - 3x + 5 = (x2 - 2.x.\(\dfrac{3}{2}\)+ \(\dfrac{9}{4}\)) + \(\dfrac{11}{4}\)
= ( x - \(\dfrac{3}{2}\))^2 + \(\dfrac{11}{4}\) \(\ge\dfrac{11}{4}>0\left(đpcm\right)\)
\(4x^3+15=47\)
\(\Leftrightarrow4x^3=32\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
\(4.2^x-3=125\)
\(\Leftrightarrow4.2^x=128\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
ok thanks