Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7(x - 3) - x(3 - x)
= (x - 3)(7 + x)
chỉ bt có v mà k bt có đúng k
1 ) 7 ( x - 3 ) - x ( 3 - x )
= 7 ( x - 3 ) + x ( x - 3 )
= ( x - 3 ) ( 7 + x )
2 ) 4x2 - 6x + 3 - 2x
= 4x2 - 2x - 6x + 3
= 2x ( 2x - 1 ) - 3 ( 2x - 1 )
= ( 2x - 1 ) ( 2x - 3 )
3 ) ( 4 - x ) - 4x + x2
= ( 4 - x ) - x ( 4 - x )
= ( 4 - x ) ( 1 - x )
4 ) x2 - 2xy + y2
= ( x - y )2
3x(12x-4)-(4x-3)(9x+4) = 9
36x2 -12x-(36x2 -16x-27x-12) = 9
36x2 -12x-36x2 -16x+27x+12 = 9
-x = 9-12
-x = -3
x= -3 : -1
x= 3
vậy x= 3
a) \(x^3-7x-6\)
\(=\left(x^3+2x^2\right)-\left(2x^2+4x\right)-\left(3x+6\right)\)
\(=\left(x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+1\right)\)
b)\(x^3-19x-30\)
\(=\left(x^3-5x^2\right)+\left(5x^2-25x\right)+\left(6x-30\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
c) \(a^3-6a^2+11a-6\)
\(=\left(a^3-a^2\right)-\left(5a^2-5a\right)+\left(6a-6\right)\)
\(=\left(a-1\right)\left(a^2-5a+6\right)\)
\(=\left(a-1\right)\left(a-2\right)\left(a-3\right)\)
\(2x-1-x^2=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\\ \left(1-3\right)^3-1=\left(-2\right)^3-1=-2-1=-3\\ \left(4x-1\right)^2-9x^2=\left(4x-1-3x\right)\left(4x-1+3x\right)=\left(x-1\right)\left(7x-1\right)\\ \left(x+2\right)^3+1=\left(x+2+1\right)\left[\left(x+2\right)^2+\left(x+2\right)+1\right]\\ =\left(x+3\right)\left(x^2+4x+4+x+2+1\right)\\ =\left(x+3\right)\left(x^2+5x+7\right)\)
\(\dfrac{x+2}{x-3}+\dfrac{x-2}{x}=\dfrac{x^2+2x+6}{x\left(x-3\right)}\) đkxđ: x khác 3 , x khác 0
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-3\right)}+\dfrac{\left(x-2\right)\left(x-3\right)}{x\left(x-3\right)}-\dfrac{x^2+2x+6}{x\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+2x}{....}+\dfrac{x^2-3x-2x+6}{.....}-\dfrac{x^2+2x+6}{...}=0\)
\(\Leftrightarrow x^2+2x+x^2-3x-2x+6-x^2-2x-6=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
\(a)6x^2y+9xy^2-2-3y=3xy\left(2x+3y\right)-\left(2x+3y\right)=\left(3xy-1\right)\left(2x+3y\right)\)
\(b)x^2-y^2+4-4x=\left(x-2\right)^2-y^2=\left(x+y-2\right)\left(x-y-2\right)\)
\(c)x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+y^2+xy\right)\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(d)4x^2-9y^2+4x+1=\left(2x+1\right)^2-9y^2=\left(2x+3y-1\right)\left(2x-3y+1\right)\)
\(e)x^2-y^2+4x+4=\left(x+2\right)^2-y^2=\left(x+y+2\right)\left(x-y+2\right)\)
b,x2 -y2 +4-4x
=(x2 -4x +4)-y2
=(x-2)2 -y2
=(x-2-y)(x-2+y)
a) \(x^2-8x+19=\left(x-4\right)^2+3>0\)
b) \(3x^2-6x+5=3\left(x-1\right)^2+2>0\)
c) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
d) \(x^2-4x+7=\left(x-2\right)^2+3>0\)
e) \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
f) do \(x^2\ge0\) với mọi x
nên \(x^2+8>0\)
(3x-2)(4x-3-2x+2)-(2-3x)(x-1)
(3x-2)(2x-1)-(3x-2)(1-x)
(3x-2)(2x-1-1+x)
(3x-2)(3x-2)
tớ làm ko đúng thì chỉ cho nhé
Ý kiến cua mk
a) x^2 + 4x + 3
=x^2+x+3x+3
=x(x+1)+3(x+1)
=(x+3)(x+1)
b) - x - y^2 + x^2 - y
=(x-y)+(x^2-y^2)
=(x-y)+(x-y)(x+y)
=(x-y)(x+y+1)
c) x^2 - 3x + 2
=x^2-x-2x+2
=x(x-1)-2(x-1)
=(x-2)(x-1)
\(x^3+4x^2+4x+3\)
\(=\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
Phân tích đa thức thành nhân tử à bạn?