K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Ta có : P = 1.2.2 + 2.3.3 + ....+ 99.100.100

=1.2.(3 - 1) + 2.3.(4 - 1) + ....+99.100.(101 - 1)

= (1.2.3 + 2.3.4 + .... + 99.100.101) - (2.3 + 3.4+.....+99.100)

Đặt B = 1.2.3 + 2.3.4 + 4.5.6 +...+ 99.100.101

4B = 1.2.3.(4 - 0)+2.3.4.(5 - 1) + ... + (99.100.101(102 - 98)

4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 +...+ 99.100.101.102 - 98.99.100.101

4B = 99.100.101.102

4B = 101989800

B = 25497450

Đặt C = 1.2 + 2.3 + 3.4 +...+ 99.100

3C = 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 99.100.(101 - 98)

3C = 1.2.3 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100

3C = 99.100.101

3C = 999900

C = 999900 : 3

C = 333300

Vậy: P = 25497450 – 333300 = 25164150 

15 tháng 7 2017

Giải cụ thể mk k cho

11 tháng 3 2017

A=2(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))=2(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))

=> A=2(\(\frac{1}{1}-\frac{1}{100}\))=2.\(\frac{99}{100}=\frac{99}{50}\)

ĐS: A=99/50

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{99\times100}\)

\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

15 tháng 1 2022

gấp lắm ạ giúp em với

 

\(\Leftrightarrow y\cdot\dfrac{99}{50}=\dfrac{198}{100}=\dfrac{99}{50}\)

hay y=1

10 tháng 9 2017

Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=2.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2.99}{100}\)

\(A=\frac{99}{50}=1\frac{49}{50}\)

10 tháng 9 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(1-\frac{1}{100}\right)=2.\frac{99}{100}\)

\(=\frac{99}{50}\)

27 tháng 10 2015

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{99.100}\)

\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

\(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(2.\left(1-\frac{1}{100}\right)\)

\(2.\frac{99}{100}\)

\(\frac{99}{50}\)

12 tháng 9 2017

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300

16 tháng 11 2021

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee2

18 tháng 6 2018

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300