Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
A = 1×2 + 2×3 + 3×4 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + 3×4×(5-2) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + 3×4×5 - 2×3×4 + ... + 98×99×100 - 97×98×99
3A = 98×99×100
A = 98×33×100
A = 323400
2) Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Ta có:
102012 + 1/102013 + 1 < 102012 + 1 + 9/102013 + 1 + 9
< 102012 + 10/102013 + 10
< 10.(102011 + 1)/10.(102012 + 1)
< 102011 + 1/102012 + 1
Vào lúc: 2016-07-17 13:22:30 Xem câu hỏi
1) A = 1×2 + 2×3 + 3×4 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + 3×4×(5-2) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + 3×4×5 - 2×3×4 + ... + 98×99×100 - 97×98×99
3A = 98×99×100
A = 98×33×100
A = 323400
2) Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Ta có:
102012 + 1/102013 + 1 < 102012 + 1 + 9/102013 + 1 + 9
< 102012 + 10/102013 + 10
< 10.(102011 + 1)/10.(102012 + 1)
< 102011 + 1/102012 + 1
S = 1x2 + 2x3 + 3x4 + ……………… + 11x12 + 12x13
3S=1x2x3 + 2x3x3 + 3x4x3+ ………. + 11x12x3 + 12x13x3
Ta lấy K = 1x2x3 +2x3x4 + 3x4x5 + …… + 11x12x13 + 12x13x14
- 3S = 1x2x3 + 2x3x3 + 3x4x3+ ……… + 11x12x3 + 12x13x3
------------------------------------------------------------------------------------
K – 3S = 0 + 2x3x1 + 3x4x2 + …… .. + 11x12x10 + 12x13x11
K – 3S = K – 12x13x14
Từ đó suy ra: 3S = 12x13x14
S = 4x13x14 = 728
Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
= \(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(1-\frac{1}{100}\right)\)
= \(2.\frac{99}{100}\)
= \(\frac{99}{50}\)