cho a,b la 2 so tu nhien . biet a chia 3 du 1 , b chia 3 du 2 chung minh a nhan b chia 3 du 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )
- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )
Ta có :
a . b = ( 3m + 1 ) ( 3n + 2 )
= 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2
= ( 9 mn + 6m + 3n ) + 2
= 3 ( 3mn + 2m + n ) + 2 ....
Vậy ab chia cho 3 dư 2 .
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Bài giải:
Ta thấy: 20ab : 9 (dư 6)
20ab : 5 (dư 3) => b = 8 hoặc b = 3 (1)
20ab : 2 (dư 1) => b là số lẻ (2)
Từ (1) và (2) ta suy ra: b = 3
=> a = 1 (để 20ab : 9 dư 6)
Vậy số cần tìm là 2013
Các số a; b; c có dạng
a=9m+4; b=9n+5; c=9p+8
a/ a+b=9m+4+9n+5=9(m+n)+9 chia hết cho 9
b/ b+c=9n+5+9p+8=9(n+p)+9+4
=> b+c chia 9 dư 4
a)Gọi số a =9p+4
b=9q+5
=>a+b=9p+4+9q+5=9p+9q+9=9.(p+q+1)\(⋮\)9
Vậy a+b chia hết cho 9 khi a chia 9 dư 4 và b chia 9 dư 5
b)Gọi số b=9q+5
c=9k+8
=>b+c=9q+5+9k+8=9q+9k+13=9.(q+k+1)+4
Mà 9.(q+k+1)\(⋮\)9
=>b+c chia 9 dư 4
Vậy b+c chia 9 dư 4 khi b chia 9 dư 5 và c chia 9 dư 8
Chúc bn học tốt
Ta đặt a = 3m + 1 và b = 3n + 2 với m, n là số tự nhiên.
Nhân a với b = (3m + 1)(3n + 2) = 9mn + 3n + 6m + 2.
Dễ thấy 9mn + 3n + 6m chia hết cho 3, vậy ab chia 3 dư 2.