K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{\left(x-y\right)\left(x+y\right)}.\\ \left(\sqrt{x+y}-1\right)\left(\sqrt{x-y}-1\right)=0.\)

Chắc bạn cũng biết phải làm gì :))

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

1 tháng 3 2018

Đặt \(a=x\sqrt{y}\\ b=y\sqrt{x}\left(a,b>0\right)\)

hpt <=> \(\hept{\begin{cases}2\left(1+a\right)^2=9b\\2\left(1+b\right)^2=9a\end{cases}}\)

lấy 2 cái trừ nhau ta được

\(2\left(a-b\right)\left(a+b+2\right)=-9\left(a-b\right)\)

\(\left(a-b\right)\left(2a+2b+13\right)=0\)

Vì a,b >o

nên a=b

30 tháng 4 2020

\(\hept{\begin{cases}2\left(1+x\sqrt{y}\right)^2=9y\sqrt{x}\\2\left(1+y\sqrt{x}\right)^2=9x\sqrt{y}\end{cases}\left(I\right)}\)

ĐK: x >=0; y >=0

Đặt \(a=x\sqrt{y};y=b\sqrt{x}\). ĐK a>=0; b>=0. Hệ (I) trở thành \(\hept{\begin{cases}2\left(1+a\right)^2=9b\left(1\right)\\2\left(1+b\right)^2=9a\left(2\right)\end{cases}}\)

Lấy (1) trừ đi (2) ta được: \(2\left(1+a\right)^2-2\left(1+b\right)^2=9\left(b-a\right)\)

<=> \(2\left(a-b\right)\left(a+b+2\right)+9\left(a-b\right)=0\)

<=> \(\left(a-b\right)\left(2a+2b+13\right)=0\)

<=> a=b (vì 2a+2b+13 >0 với mọi a,b>0)

Thay a=b vào (1) ta có:

\(2\left(1+a\right)^2=9a\Leftrightarrow\orbr{\begin{cases}a=2\Rightarrow b=2\left(tm\right)\left(3\right)\\a=\frac{1}{2}\Rightarrow b=\frac{1}{2}\left(tm\right)\left(4\right)\end{cases}}\)

(3) => \(\hept{\begin{cases}x\sqrt{y}=2\\y\sqrt{x}=2\end{cases}\Leftrightarrow x=y=\sqrt[3]{4}}\)

(4) => \(\hept{\begin{cases}x\sqrt{y}=\frac{1}{2}\\y\sqrt{x}=\frac{1}{2}\end{cases}\Leftrightarrow x=y=\sqrt[3]{\frac{1}{4}}}\)

Vậy hệ phương trình có nghiệm \(\left(\sqrt[3]{4};\sqrt[3]{4}\right);\left(\sqrt[3]{\frac{1}{4}};\sqrt[3]{\frac{1}{4}}\right)\)

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

25 tháng 2 2020

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.