Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x\sqrt{y}\\ b=y\sqrt{x}\left(a,b>0\right)\)
hpt <=> \(\hept{\begin{cases}2\left(1+a\right)^2=9b\\2\left(1+b\right)^2=9a\end{cases}}\)
lấy 2 cái trừ nhau ta được
\(2\left(a-b\right)\left(a+b+2\right)=-9\left(a-b\right)\)
\(\left(a-b\right)\left(2a+2b+13\right)=0\)
Vì a,b >o
nên a=b
\(\hept{\begin{cases}2\left(1+x\sqrt{y}\right)^2=9y\sqrt{x}\\2\left(1+y\sqrt{x}\right)^2=9x\sqrt{y}\end{cases}\left(I\right)}\)
ĐK: x >=0; y >=0
Đặt \(a=x\sqrt{y};y=b\sqrt{x}\). ĐK a>=0; b>=0. Hệ (I) trở thành \(\hept{\begin{cases}2\left(1+a\right)^2=9b\left(1\right)\\2\left(1+b\right)^2=9a\left(2\right)\end{cases}}\)
Lấy (1) trừ đi (2) ta được: \(2\left(1+a\right)^2-2\left(1+b\right)^2=9\left(b-a\right)\)
<=> \(2\left(a-b\right)\left(a+b+2\right)+9\left(a-b\right)=0\)
<=> \(\left(a-b\right)\left(2a+2b+13\right)=0\)
<=> a=b (vì 2a+2b+13 >0 với mọi a,b>0)
Thay a=b vào (1) ta có:
\(2\left(1+a\right)^2=9a\Leftrightarrow\orbr{\begin{cases}a=2\Rightarrow b=2\left(tm\right)\left(3\right)\\a=\frac{1}{2}\Rightarrow b=\frac{1}{2}\left(tm\right)\left(4\right)\end{cases}}\)
(3) => \(\hept{\begin{cases}x\sqrt{y}=2\\y\sqrt{x}=2\end{cases}\Leftrightarrow x=y=\sqrt[3]{4}}\)
(4) => \(\hept{\begin{cases}x\sqrt{y}=\frac{1}{2}\\y\sqrt{x}=\frac{1}{2}\end{cases}\Leftrightarrow x=y=\sqrt[3]{\frac{1}{4}}}\)
Vậy hệ phương trình có nghiệm \(\left(\sqrt[3]{4};\sqrt[3]{4}\right);\left(\sqrt[3]{\frac{1}{4}};\sqrt[3]{\frac{1}{4}}\right)\)
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
Xét hệ \(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=1\\\sqrt{x^2-1}+\sqrt{y^2-1}=\sqrt{xy+2}\end{cases}}\)
\(ĐKXĐ:\hept{\begin{cases}x^2\ge1\\y^2\ge1\\xy\ge-2\end{cases}}\)
Hệ đã cho tương đương với \(\hept{\begin{cases}x^2+y^2=x^2y^2\left(1\right)\\x^2+y^2-2+2\sqrt{\left(x^2-1\right)\left(y^2-1\right)}=xy+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow x^2y^2-2+2\sqrt{x^2y^2-x^2-y^2+1}=xy+2\)\(\Leftrightarrow x^2y^2=xy+2\)(suy ra từ (1))
\(\Leftrightarrow\left(xy-2\right)\left(xy+1\right)=0\Leftrightarrow\orbr{\begin{cases}xy=2\\xy=-1\end{cases}}\)
* \(xy=2\Rightarrow4=x^2y^2=x^2+y^2+2xy-4\Leftrightarrow\left(x+y\right)^2=8\)\(\Rightarrow\orbr{\begin{cases}x+y=2\sqrt{2}\\x+y=-2\sqrt{2}\end{cases}}\)
+) Với \(x+y=2\sqrt{2}\)ta được hệ \(\hept{\begin{cases}xy=2\\x+y=2\sqrt{2}\end{cases}}\Leftrightarrow x=y=\sqrt{2}\)
+) Với \(x+y=-2\sqrt{2}\)ta được hệ \(\hept{\begin{cases}xy=2\\x+y=-2\sqrt{2}\end{cases}}\Leftrightarrow x=y=-\sqrt{2}\)
* \(xy=-1\Rightarrow1=x^2y^2=x^2+y^2+2xy+2\Rightarrow\left(x+y\right)^2=-1\left(L\right)\)
Vậy hệ phương trình có 2 nghiệm \(\left(x;y\right)\in\left\{\left(\sqrt{2};\sqrt{2}\right);\left(-\sqrt{2};-\sqrt{2}\right)\right\}\)
=|| Đăng toàn bài khó thế!
Giải
Điều kiện: \(x\ge\left(-1\right),y\ge\left(-1\right)\).
Đặt \(u=\sqrt{x+1},v=\sqrt{y-1}\) (u , v \(\ge0\))
Ta được \(\left(4\right)\Leftrightarrow\hept{\begin{cases}y-3v=\left(-1\right)\\2u+5v=9\end{cases}\Leftrightarrow\hept{\begin{cases}u=2\\v=1\end{cases}}}\)
Từ đó \(\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{y-1}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=4\\y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
Ta có:
\(x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)
Xét y=-1 thay vào tìm x
Xét y khác -1
\(pt\Leftrightarrow\frac{x-y}{y+1}-2+\sqrt{\frac{x-y}{y+1}}=0\) (2)
Đặt \(\sqrt{\frac{x-y}{y+1}}=a\left(a\ge0\right)\)
pt(2) trở thành
\(a^2+a-2=0\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)
Làm r nhưng mà làm lại hjhjhj
\(\hept{\begin{cases}x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\left(1\right)\\3\sqrt{8-x}-\frac{4y}{\sqrt{y+1}+1}=x^2-14y-8\left(2\right)\end{cases}}\)
\(ĐK:\hept{\begin{cases}y\left(x-y-1\right)+x\ge0\\x\le8\\y\ge-1\end{cases}}\)
\(\left(1\right)\Leftrightarrow\sqrt{y\left(x-y-1\right)+x}=-\left(x-3y-2\right)\)\(\Leftrightarrow\sqrt{xy-y^2-y+x}=-\left(x-3y-2\right)\)
\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=x-3y-2\)\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=\left(x-y\right)-2\left(y+1\right)\)
\(\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)(*)
* Với y = -1 thì từ (*) suy ra x = -1
Thay nghiệm \(\left(x,y\right)=\left(-1,-1\right)\)vào (2) thì ta thấy không đúng
* Với \(y\ne-1\)thì chia hai vế của phương trình (*) cho y + 1, ta được: \(\left(\frac{x-y}{y+1}\right)-2+\sqrt{\frac{x-y}{y+1}}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\frac{x-y}{y+1}}=1\left(tm\right)\\\sqrt{\frac{x-y}{y+1}}=-2\left(ktm\right)\end{cases}}\Leftrightarrow x-y=y+1\Leftrightarrow y=\frac{x-1}{2}\)
Khi đó \(\left(2\right)\Leftrightarrow3\sqrt{8-x}-\frac{4.\frac{x-1}{2}}{\sqrt{\frac{x-1}{2}+1}+1}=x^2-14.\frac{x-1}{2}-8\)
\(\Leftrightarrow3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1=0\)
Đặt \(f\left(x\right)=3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1\)
Ta có: \(f\left(-1\right)=6;f\left(8\right)=-3-6\sqrt{2}\Rightarrow f\left(-1\right).f\left(8\right)=-18-36\sqrt{2}< 0\)
\(\Rightarrow f\left(x\right)\)có ít nhất một nghiệm trên đoạn \(\left[-1;8\right]\)
Lại có f(7) = 0 \(\Rightarrow\)x = 7 là nghiệm của f(x) \(\Rightarrow y=3\)
Vậy hệ phương trình có 1 nghiệm \(\left(x,y\right)=\left(7,3\right)\)
\(\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{\left(x-y\right)\left(x+y\right)}.\\ \left(\sqrt{x+y}-1\right)\left(\sqrt{x-y}-1\right)=0.\)
Chắc bạn cũng biết phải làm gì :))