cho tam giác ABC vuông tại A có BC=12cm Tính chiều dài 2 cạnh góc vuông biết AB=2/3AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)
\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)
\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)
\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)
Hình vẽ chỉ mang tính chất minh họa, bạn tham khảo nhé.
Đặt AC = x (x > 0) => AC = 2/3x
Áp dụng đ/l Pytago , ta có : \(AB^2+AC^2=BC^2\Leftrightarrow x^2+\left(\frac{2x}{3}\right)^2=12^2\Leftrightarrow\frac{13}{9}x^2=144\Leftrightarrow x^2=\frac{1296}{13}\Leftrightarrow x=\frac{36\sqrt{13}}{13}\)(vì x > 0)
Suy ra \(AC=\frac{36\sqrt{13}}{13};AB=\frac{24\sqrt{13}}{13}\)
a: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
b: BC=căn 16^2+12^2=20cm
c: AD là phân giác
=>BD/3=CD/4=(BD+CD)/(3+4)=20/7
=>BD=60/7cm; CD=80/7cm
d: AH=12*16/20=192/20=9,6cm
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Vậy: BC=20cm
áp dụng định lí PITAGO vào tam giác vuông ABC : \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2+\left(\frac{3}{2}AB\right)^2=12^2\)
\(\Leftrightarrow\frac{13}{4}AB^2=12^2\Rightarrow AB=\frac{24\sqrt{13}}{13}\)
SUY RA \(AC=\frac{36\sqrt{13}}{13}\)