Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)
\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)
\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)
\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)
Hình vẽ chỉ mang tính chất minh họa, bạn tham khảo nhé.
Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)
Vì tam giác ABC vuông tại A nên:
\(AB^2+AC^2=BC^2\)
=> \(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
=>\(\frac{4}{9}AC^2+AC^2=144\)
=>\(AC^2\left(\frac{4}{9}+1\right)=144\)
=>\(AC^2.\frac{13}{9}=144\)
=>\(AC^2=144:\frac{13}{9}=\frac{1296}{13}\)
=> \(AC=\frac{36\sqrt{13}}{13}\)
=> \(AB=AC.\frac{2}{3}=\frac{36\sqrt{13}}{13}.\frac{2}{3}=\frac{24\sqrt{13}}{13}\)
Vậy 2 cạnh góc vuông của tam giác ABC là \(\frac{24\sqrt{13}}{13}\)và\(\frac{36\sqrt{13}}{13}\)
áp dụng định lí PITAGO vào tam giác vuông ABC : \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2+\left(\frac{3}{2}AB\right)^2=12^2\)
\(\Leftrightarrow\frac{13}{4}AB^2=12^2\Rightarrow AB=\frac{24\sqrt{13}}{13}\)
SUY RA \(AC=\frac{36\sqrt{13}}{13}\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Đặt AC = x (x > 0) => AC = 2/3x
Áp dụng đ/l Pytago , ta có : \(AB^2+AC^2=BC^2\Leftrightarrow x^2+\left(\frac{2x}{3}\right)^2=12^2\Leftrightarrow\frac{13}{9}x^2=144\Leftrightarrow x^2=\frac{1296}{13}\Leftrightarrow x=\frac{36\sqrt{13}}{13}\)(vì x > 0)
Suy ra \(AC=\frac{36\sqrt{13}}{13};AB=\frac{24\sqrt{13}}{13}\)