Cho xy^2+yz^2+zx^2=3 tim gtnn cua x^4+y^4+z^4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LS
0
PN
25 tháng 8 2020
\(P=\frac{xyz}{z}+\frac{xyz}{x}+\frac{xyz}{y}=xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2.\frac{9}{4}=\frac{9}{2}\)(bđt svacxo)
đây là tìm min nhé
VT
0
VN
0
TB
0
LH
1
G
24 tháng 2 2019
\(x^2+y^2+z^2+xy+yz+xz\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2xz\right)-\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)^2-\left(xy+yz+xz\right)\)
Mặt khác: \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2-\left(xy+yz+xz\right)\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}=9-3=6\)
"=" khi a=b=c=1