giai giup m nhanh vs ak
chung minh dang thuc duoi luon dung
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau 1:
a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)
\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)
c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)
TH1: c>0
\(C=\dfrac{c+1}{c-1}\)
TH2: c<0
\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)
\(2.p=\left(a+2016\right)-\left(a-2016\right)=2.2016\Rightarrow P=2016\)
\(1a.\) Để : \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\) xác định thì :
\(x+\dfrac{3}{x}\) ≥ 0 và \(-3x\) ≥ 0
⇔ \(\dfrac{x^2+3}{x}\) ≥ 0 và : x ≤ 0 ⇔ x > 0 và : x ≤ 0 ( Vô lý )
⇔ x ∈ ∅
b. Để : \(\sqrt{x^2+4x+5}\) xác định thì :
\(x^2+4x+5\) ≥ 0
Mà : \(x^2+4x+5=\left(x+2\right)^2+1>0\)
Vậy , ........
c. Để : \(\sqrt{2x^2+4x+5}\) xác định thì :
\(2x^2+4x+5\) ≥ 0
Mà : \(2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3>0\)
Vậy ,.........
Bài 2. \(a.x+5\sqrt{x}+6=x+2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}+6-\dfrac{25}{4}=\left(\sqrt{x}+\dfrac{5}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{5}{2}-\dfrac{1}{2}\right)\left(\sqrt{x}+\dfrac{5}{2}+\dfrac{1}{2}\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)
\(b.x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
\(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)
\(=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
Vì \(a\le6\Rightarrow\sqrt{a-2}\le2\Rightarrow\sqrt{a-2}-2\le0\Rightarrow\left|\sqrt{a-2}-2\right|=2-\sqrt{a-2}\)
Vì \(a\ge2\Rightarrow\sqrt{a-2}+2\ge2>0\)
\(\Rightarrow\text{ }\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|=\sqrt{a-2}+2+2-\sqrt{a-2}=4\)
Ta có: \(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
\(=\sqrt{a-2}+2-\sqrt{a-2}+2\)
=4
a) \(4-2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
b)\(7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
Đ K :a> hoặc bằng 2
căn(a-2+4\(\sqrt{a-2}\)+4)-căn (a-2-4\(\sqrt{a-2}\)+2)
=\(\sqrt{\left(\sqrt{a-2}+2\right)^2}\)-\(\sqrt{\left(\sqrt{a-2}-2\right)}\)
=\(\sqrt{a-2}+2-\sqrt{a-2}+2\)
=4
vậy.................
hình như đề bài của bạn sai hay sao đấy