K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

a)Đặt A=\(x^2-4xy+5y^2-2y+3\)

\(\Leftrightarrow x^2-4xy+4y^2+y^2-2y+1+2\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-1\right)^2+2\)

          Vì \(\left(x-2y\right)^2\ge0;\left(y-1\right)^2\ge0\)

                      Nên \(\left(x-2y\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

          Vậy Min A = 2 khi x = 2 ; y = 1

b)k ko hỉu

23 tháng 6 2017

a)A= \(x^2-4xy+5y^2-2y+3\)

\(=x^2-4xy+4y^2+y^2-2y+1-2\)

\(=\left(x-2y\right)^2+\left(y-1\right)^2-2\ge-2\)

MIN A=-2 khi\(\orbr{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=1\end{cases}}}\)Vậy.......

b)\(B=x^2-2xy+2y^2-x+y\)????

18 tháng 6 2018

2xy.(3x^2y-4xy^2)-1/2x^2y^2.(12x-16y)+xy.(3-13xy)+13.(x^2y^2-1)

30 tháng 9 2019

Em kiểm tra lại đề câu b.

30 tháng 9 2019

20x nhe

11 tháng 7 2016

a) (x+y)2-y2=x2+2xy+y2-y2=x2+2xy=x(x+2y)  (đpcm)

11 tháng 7 2016

2 a )

4a2+4a+2=(2a)2+2.2a+1+1=(2a+1)2+1

vì (2a+1)lớn hơn hoặc = 0 với mọi a nên (2a+1)2+1 lớn hơn hoặc = 1 

dấu ''='' xảy ra khi 2a+1=0<=>a=-1/2

27 tháng 7 2017

6 nha bạn

18 tháng 11 2022

\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}y^2-2y+2023\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y^2-10y+25\right)+2018\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2018>=2018\)

Dấu = xảy ra khi y=5 và x=2/5y=2

29 tháng 3 2022

`Answer:`

undefined

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)