K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Giả sử a > b > 0 \(=>\frac{1}{a}< \frac{1}{b}=>\frac{1}{a}-\frac{1}{b}< 0;\frac{1}{a-b}>0\)

\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

 Trường hợp 2

Giả sử a < b \(=>\frac{1}{a}>\frac{1}{b}=>\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}< 0\) 

\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

22 tháng 6 2017

\(a-b=2\left(a+b\right)=\frac{a}{b}\)

\(\hept{\begin{cases}a-b=2\left(a+b\right)\\2\left(a+b\right)=\frac{a}{b}\end{cases}}\)

a-b=2(a+b)

a-b=2a+2b

3b=a

Another way :

a-b=2(a+b)

=> -2b - b -2a + a =0

-(3b+a)=0

3b+a=0

Do đó :3b-b= 3b/b = 3 nên b = 3/4

b = 3/4 nên a = - 9/4

\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{4}\\a=-\frac{9}{4}\end{cases}}\)

29 tháng 5 2017

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(a-b\right)}{ab\left(a-b\right)}=\frac{ab}{\left(a-b\right)ab}\)

\(\Leftrightarrow-\left(b-a\right)^2=ab\)

\(\Leftrightarrow-b^2+2ab-a^2=ab\)

\(\Leftrightarrow\)\(ab=a^2+b^2\)

Từ đây dùng cô-si : \(a^2+b^2\ge4ab\)

Vậy không có số dương a,b thỏa mãn

29 tháng 5 2017

ukm,bằng?

22 tháng 6 2017

Bài 1 :

Ta có :

\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\Rightarrow\dfrac{b-a}{ab}=\dfrac{1}{a-b}\)

\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab.1\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\)

\(\Rightarrow-\left(a-b\right)^2=ab\)

\(-\left(a-b\right)^2\le0\) với mọi a, b ko thể cùng dương

Vậy ko tồn tại 2 số dương a,b khác nhau để thõa mãn đề bài

22 tháng 6 2017

Bài 1:

Trường hợp 1 :

Giả sử a > b > 0 \(=>\) \(\dfrac{1}{a}< \dfrac{1}{b}=>\dfrac{1}{a}-\dfrac{1}{b}< 0\) ; \(\dfrac{1}{a-b}>0\)

\(=>\dfrac{1}{a}-\dfrac{1}{b}\ne\dfrac{1}{a-b}\)

Trường hợp 2 :

Giả sử a < b \(=>\dfrac{1}{a}>\dfrac{1}{b}=>\dfrac{1}{a}-\dfrac{1}{b}>0\) ; \(\dfrac{1}{a-b}< 0\)

\(=>\dfrac{1}{a}-\dfrac{1}{b}\ne\dfrac{1}{a-b}\)

Vậy không tồn tại hai số nguyên dương a và b khác nhau sao cho \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)

14 tháng 5 2021

a) Gọi 7 số đó là: a1, a2, a3 ..... a7 (đk các số khác 0)

Ta có a1.a2 = a2.a3 => a1=a3 

Tương tự a2 = a4, a3=a5,.......

=> Các số đều bằng nhau

mà 2 số bất kì có tích = 16

=> Các số có thể là 4 hoặc -4

15 tháng 5 2021

Giả sử n là số lẻ

Gọi n số đã cho là \(a_1;a_2;...;a_n\)

Giả sử n số này được viết trên 1 vòng tròn theo thứ tự như trên.
Ta có \(a_1.a_2=a_2.a_3=...=a_{n-1}.a_n\\ \Rightarrow a_1=a_3=...=a_n;a_2=a_4=...a_{n-1}\)

Lại có \(a_n.a_1=16\Leftrightarrow a_1^2=16\Rightarrow a_1=\pm4\)

* Nếu a1 = 4 thì an = 4

* Nếu a1 = -4 thì an = -4

Vậy các số có thể là 4 hoặc -4

30 tháng 6 2019

Nguyễn Minh bạn chỉ đăng 1,2 câu trả lời thôi nhé , chứ dài quá

Mình sẽ làm bài 1,2

1.\(a,\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}=\frac{37}{11}x-\frac{8}{11}\)

\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}-\frac{37}{11}x=-\frac{8}{11}\)

\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x-\frac{37}{11}x+\frac{25}{11}=-\frac{8}{11}\)

\(\Leftrightarrow\frac{121}{11}x=-3\)

\(\Leftrightarrow11x=-3\Leftrightarrow x=-\frac{3}{11}\)

\(b,3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=\frac{21}{10}\)

\(3x-\left[\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}\right]=\frac{21}{10}\)

\(3x-\left[5\left\{\frac{3}{5\cdot8}-\frac{3}{8\cdot11}-\frac{3}{11\cdot14}-...-\frac{3}{47\cdot50}\right\}\right]=\frac{21}{10}\)

Làm nốt :v

30 tháng 6 2019

2. Gọi hai phân số đó là \(\frac{a}{b}\)và \(\frac{c}{d}\)

Theo đề bài ta có : \(\frac{a}{b}+\frac{c}{d}=\frac{4}{33}\Rightarrow\frac{ad+bc}{bd}=\frac{4}{33}\Rightarrow ad+bc=\frac{4}{33}bd\)

\(\frac{a}{b}\cdot\frac{c}{d}=-\frac{4}{11}\Rightarrow\frac{bd}{ac}=\frac{-11}{4}\)

Tổng các số nghịch đảo của hai phân số trên là :

\(\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}=\frac{\frac{4}{33}bd}{ac}=\frac{4}{33}\cdot\left[-\frac{11}{4}\right]=-\frac{1}{3}\)