K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.

Ta có:

\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn 

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)

\(\Leftrightarrow A^2-A-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)

20 tháng 6 2017

mỗi lần mình đều xem hết danh sách câu hỏi tương tự mà không thấy.

Cảm ơn bạn nha!

a) \(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)

b) \(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)

c) \(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\left(5-\sqrt{5}\right)}{20}=\dfrac{5\sqrt{2}-\sqrt{10}}{5}\)

12 tháng 7 2021

\(a.\)

\(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)

\(b.\)

\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{\left(3\sqrt{2}\right)^2-\left(2\sqrt{3}\right)^2}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)

\(c.\)

\(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5^2-\left(\sqrt{5}\right)^2}=\dfrac{\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5}\)

27 tháng 7 2020

Đặt \(x=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}},x>0\)

=> \(x^2=4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}\)

=> \(x^2-x-4=4+\sqrt{4+\sqrt{4}+...}-\sqrt{4+\sqrt{4+\sqrt{4}+...+\sqrt{4}}}-4=0\)

=> \(x=\frac{1\pm\sqrt{17}}{2}< 3\)

Vậy ...

27 tháng 7 2020

Bài 1 :

Ta có : \(x^2-6x=6\)

=> \(x^2-6x-6=0\)

=> \(x^2-2.3x+9=15\)

=> \(\left(x-3\right)^2=15\)

=> \(x=3\pm\sqrt{15}\)

Vậy ...

24 tháng 5 2016

\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)

\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)

Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)

Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).

3 tháng 8 2018

a)Ta có:  \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)

Vì \(\sqrt{20}< \sqrt{50}\)

Nên \(2\sqrt{5}< 5\sqrt{2}\)

b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)

Vì \(\sqrt{117}< \sqrt{176}\)

Nên \(3\sqrt{13}< 4\sqrt{11}\)

c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)

\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)

Vì \(\sqrt{\frac{63}{16}}>1\)

\(\sqrt{\frac{4}{5}}< 1\)

Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)

Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)

23 tháng 6 2019

\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)

Vậy \(6>4+\sqrt{3}\)

23 tháng 6 2019

1.Phân tích căn thức sau :

\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)

2.Cách làm

\(=>6>4+\sqrt{3}\)

3.cuối cùng

~Hk tốt~

8 tháng 8 2015

\(\sqrt{2}B=\sqrt{8-2\sqrt{7}}+2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)

Vậy A = B 

8 tháng 8 2015

A = 11 

B = 7 

--> A > B