So sánh 2 số thực sau :
\(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\)và 3
có 100 dấu căn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
b) \(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
c) \(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\left(5-\sqrt{5}\right)}{20}=\dfrac{5\sqrt{2}-\sqrt{10}}{5}\)
\(a.\)
\(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
\(b.\)
\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{\left(3\sqrt{2}\right)^2-\left(2\sqrt{3}\right)^2}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
\(c.\)
\(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5^2-\left(\sqrt{5}\right)^2}=\dfrac{\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5}\)
Đặt \(x=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}},x>0\)
=> \(x^2=4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}\)
=> \(x^2-x-4=4+\sqrt{4+\sqrt{4}+...}-\sqrt{4+\sqrt{4+\sqrt{4}+...+\sqrt{4}}}-4=0\)
=> \(x=\frac{1\pm\sqrt{17}}{2}< 3\)
Vậy ...
Bài 1 :
Ta có : \(x^2-6x=6\)
=> \(x^2-6x-6=0\)
=> \(x^2-2.3x+9=15\)
=> \(\left(x-3\right)^2=15\)
=> \(x=3\pm\sqrt{15}\)
Vậy ...
\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)
\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)
Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)
Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).
a)Ta có: \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)
\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)
Vì \(\sqrt{20}< \sqrt{50}\)
Nên \(2\sqrt{5}< 5\sqrt{2}\)
b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)
Vì \(\sqrt{117}< \sqrt{176}\)
Nên \(3\sqrt{13}< 4\sqrt{11}\)
c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)
\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)
Vì \(\sqrt{\frac{63}{16}}>1\)
\(\sqrt{\frac{4}{5}}< 1\)
Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)
Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)
\(\sqrt{2}B=\sqrt{8-2\sqrt{7}}+2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)
Vậy A = B
Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.
Ta có:
\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn
\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)
\(\Leftrightarrow A^2-A-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)
Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)
mỗi lần mình đều xem hết danh sách câu hỏi tương tự mà không thấy.
Cảm ơn bạn nha!