K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

2013=2013*1=-2013*(-1)

ta có 4 trường hợp:

TH1: x-2011=2013 và 2012-y=1

=> x=4024 và y=2011

TH2: x-2011=1 và 2012-y=2013

=> x=2012 và y=-1

Th3: x-2011=-2013 và 2012-y=-1

=> x=-2 và y=2013

TH4: x-2011=-1 và 2012-y=-2013

=> x=2010 và y=4025

vậy...................

18 tháng 6 2017

TH1: \(\hept{\begin{cases}x-2011=2013\\2012-y=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=4024\\y=2011\end{cases}}\)

TH2: \(\hept{\begin{cases}x-2011=1\\2012-y=2013\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2012\\y=-1\end{cases}}\)

TH3: \(\hept{\begin{cases}x-2011=-2013\\2012-y=-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-2\\y=2013\end{cases}}\)

TH4: \(\hept{\begin{cases}x-2011=-1\\2012-y=-2013\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2010\\y=4025\end{cases}}\)

Vậy (4024;2011),(2012;-1),(-2;2013),(2010;4025)

20 tháng 4 2017

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

1 tháng 7 2017

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

5 tháng 7 2017

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

5 tháng 4 2016

Có : (x-y)+(y-z)+(x+z) = 2011+(-2012)+2013

=>    x-y+y-z+z-x = 2012

=>  2x=2012

=>x=1006

=>y=1006-2011=-1005

=>z=2013-1006=1007

Chuc ban hoc gioi !!!

6 tháng 8 2015

Đặt x-y=2011 (1)

     y-z=-2012 (2)

     z+x=2013 (3)

Cộng (1), (2),(3) vế theo vế ta được:

2.x=2012 => x=1006

Từ (1) => y= -1005 

Từ (3) => z= 1007

15 tháng 1 2019

hình bầu dục

5 tháng 4 2016

Ta co: x-y+y-z= 2011+ (-2012)

        <=> x-z=-1 

    Ta co: x-z +z+x= -1+2013

          <=> 2x= 2012 

          <=>x = 1006

Khi do: y= 1006 - 2011=-1005

            z= 2013-1006= 1007

5 tháng 4 2016

Ta có

x-y=2011 (1)

y-z=-2012 (2)

z+x=2013 (3)

(1)+(2)+(3)=x-y+y-z+z+x=2x=2011+2012+2013=6036

x=6036:2=3018

y=3018-2011=1007

z=1007-(-2012)=3019

Vậy x=3018, y=1007, z=3019

hình y chang của mình