K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Áp dụng BĐT Bernoulli ta có:

\(\left(\frac{2x}{x+y}\right)^n=\left(1+\frac{x-y}{x+y}\right)^n\ge1+\frac{n\left(x-y\right)}{x+y}\)

\(\left(\frac{2y}{x+y}\right)^n=\left(1-\frac{x-y}{x+y}\right)^n\ge1-\frac{n\left(x-y\right)}{x+y}\)

Cộng theo vế 2 BĐT trên ta có: 

\(\left(\frac{2x}{x+y}\right)^n+\left(\frac{2y}{x+y}\right)^n\ge2\) Hay \(\frac{a^n+b^n}{2}\ge\left(\frac{a+b}{2}\right)^n\)

29 tháng 9 2017

Ta thấy bđt đúng với n=1.

Giả sử bđt đúng với n=k. Ta cần c/m bđt đúng với n=k+1

Thật vậy ta có: \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\Leftrightarrow\left(\frac{a+b}{2}\right)^{k+1}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)

                     \(\Leftrightarrow\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^{k+1}+b^{k+1}}{2}\left(1\right)\)

Ta có \(VT\left(1\right)=\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^k+b^k}{2}.\frac{a+b}{2}=\frac{a^{k+1}+a^kb+ab^k+b^{k+1}}{4}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)

       \(\Leftrightarrow\frac{a^{k+1}+b^{k+1}}{2}-\frac{a^{k+1}+ab^k+a^kb+b^{k+1}}{4}\ge0\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\left(2\right)\)

Ta chứng minh (2): * Giả sử \(a\ge b\)và giả thiết cho \(a\ge-b\)\(\Leftrightarrow a\ge\left|b\right|\Leftrightarrow a^k\ge\left|b\right|^k\ge b^k\Rightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)

                            * Giả sử \(a< b\)và giả sử \(-a< b\)\(\Leftrightarrow\left|a\right|^k< b^k\Leftrightarrow a^k< b^k\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)

Vậy bđt (2) luôn đúng \(\Rightarrowđpcm\)

Đổi: \(\left(\frac{a+b}{2}\right)^n=\frac{\left(a+b\right)^n}{2^n}=\frac{a^n+b^n}{2^n}\)

Vì: \(a^n+b^n=a^n+b^n\)

\(2^n\ge2\)

=> \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\)

NV
8 tháng 5 2019

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b\right)+abc}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{a}{a+b+c}\); \(\frac{1}{a^3+c^3+1}\le\frac{b}{a+b+c}\)

Cộng vế với vế:

\(\sum\frac{1}{a^3+b^3+1}\le\frac{a+b+c}{a+b+c}=1\)(đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 11 2020

\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)

Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)