Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy bđt đúng với n=1.
Giả sử bđt đúng với n=k. Ta cần c/m bđt đúng với n=k+1
Thật vậy ta có: \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\Leftrightarrow\left(\frac{a+b}{2}\right)^{k+1}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^{k+1}+b^{k+1}}{2}\left(1\right)\)
Ta có \(VT\left(1\right)=\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^k+b^k}{2}.\frac{a+b}{2}=\frac{a^{k+1}+a^kb+ab^k+b^{k+1}}{4}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)
\(\Leftrightarrow\frac{a^{k+1}+b^{k+1}}{2}-\frac{a^{k+1}+ab^k+a^kb+b^{k+1}}{4}\ge0\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\left(2\right)\)
Ta chứng minh (2): * Giả sử \(a\ge b\)và giả thiết cho \(a\ge-b\)\(\Leftrightarrow a\ge\left|b\right|\Leftrightarrow a^k\ge\left|b\right|^k\ge b^k\Rightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)
* Giả sử \(a< b\)và giả sử \(-a< b\)\(\Leftrightarrow\left|a\right|^k< b^k\Leftrightarrow a^k< b^k\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)
Vậy bđt (2) luôn đúng \(\Rightarrowđpcm\)
Đổi: \(\left(\frac{a+b}{2}\right)^n=\frac{\left(a+b\right)^n}{2^n}=\frac{a^n+b^n}{2^n}\)
Vì: \(a^n+b^n=a^n+b^n\)
\(2^n\ge2\)
=> \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\)
c) \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)
\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)
\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)
e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=1+\frac{b}{a}+\frac{a}{b}+1\)
\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)
\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)
\(=2+\frac{a.a+b.b}{b.a}\)
Vì \(\frac{a.a+b.b}{a.b}>=2\)
Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)
Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)
a) \(a^2+b^2-2ab\)
\(=\left(a-b\right)^2\)
Vì \(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)
Hay \(a^2+b^2-2ab>=0\)
Ta có: \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4\)
\(=\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)-2\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)^2-2\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)-\left(\frac{a}{b}+\frac{b}{a}-2\right)\)
\(=\left(\frac{a}{b}+\frac{b}{a}-2\right)\left(\frac{a}{b}+\frac{b}{a}-1\right)\)
\(=\frac{a^2+b^2-2ab}{ab}.\frac{a^2+b^2-ab}{ab}\)
\(=\frac{\left(a-b\right)^2\left[\left(a-\frac{b}{2}\right)^2+\frac{3}{4}b^2\right]}{a^2b^2}\ge0\forall a,b\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4\ge0\left(đpcm\right)\)
\(VT=\frac{a^2}{b^2}+\frac{b^2}{a^2}-4\left(\frac{a}{b}+\frac{b}{a}\right)+2+4+\left(\frac{a}{b}+\frac{b}{a}\right)-2\)
\(\Leftrightarrow VT=\left(2-\frac{a}{b}-\frac{b}{a}\right)^2+\left(\frac{a}{b}+\frac{b}{a}\right)-2\)
Theo Cosi có \(\frac{a}{b},\frac{b}{a}\) là hai số nghịch đảo nên \(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)-2\ge0\)
Vậy VT >= 0 với a,b khác 0
Áp dụng BĐT Bernoulli ta có:
\(\left(\frac{2x}{x+y}\right)^n=\left(1+\frac{x-y}{x+y}\right)^n\ge1+\frac{n\left(x-y\right)}{x+y}\)
\(\left(\frac{2y}{x+y}\right)^n=\left(1-\frac{x-y}{x+y}\right)^n\ge1-\frac{n\left(x-y\right)}{x+y}\)
Cộng theo vế 2 BĐT trên ta có:
\(\left(\frac{2x}{x+y}\right)^n+\left(\frac{2y}{x+y}\right)^n\ge2\) Hay \(\frac{a^n+b^n}{2}\ge\left(\frac{a+b}{2}\right)^n\)