K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

áp dung BĐT cô si \(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

                                vì a+b+c=1 => dpcm

12 tháng 6 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=9\)

<=>1+1+1 +\(\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\)>=9     (*)

áp đụng cô si

\(\frac{a}{b}+\frac{b}{a}>=2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

tương tự

\(\frac{a}{c}+\frac{c}{a}>=2\)

\(\frac{b}{c}+\frac{c}{b}>=2\)

=> (*) đúng Mà a+b+c=1

=> đpcm

AH
Akai Haruma
Giáo viên
30 tháng 3 2022

Lời giải:
a. Áp dụng BĐT Cô-si:

$\frac{1}{a}+\frac{a}{4}\geq 1$

$\frac{1}{b}+\frac{b}{4}\geq 1$

$\frac{1}{c}+\frac{c}{4}\geq 1$

Cộng theo vế:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{6}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{2}$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$
b.

Áp dụng BĐT Cô-si:

$\frac{a^2}{c}+c\geq 2a$

$\frac{b^2}{a}+a\geq 2b$

$\frac{c^2}{b}+b\geq 2c$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+(c+a+b)\geq 2(a+b+c)$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\geq a+b+c=6$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$

10 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Cộng theo vế 2 bđt trên ta có:

\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu = khi a=b=c

b)Áp dụng Bđt Cô-si ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)

Cộng theo vế 3 bđt trên ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Đấu = khí a=b=c

 

10 tháng 11 2016

bn sử đấu = khí dấu = khi nhé

17 tháng 3 2019

nhân chéo lên

nhân a+b+c từ 9/a+b+c sang vế trái

vế phải còn 9

sau đó nhân vế trái ra 

sử dụng bdt cosi là ra nha bn

mik lớp 7 sory

Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath

Ban jtrar My làm òi nhé !

1 tháng 6 2018

Bạn tham khảo tại đây : 

Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath

~ Ủng hộ nhé 

17 tháng 2 2017

Vì a>0; b>0 nên a + b \geq 4ab1+ab4ab1+ab
\Leftrightarrow (a + b)(1 + ab)\geq 4ab
\Leftrightarrow a + b + a^2b+ab^2\geq 4ab
\Leftrightarrow a + b + a^b + ab^2 - 4ab\geq 0
\Leftrightarrow (a^2b - 2ab + b) + (ab^2 - 2ab +a) \geq 0
\Leftrightarrow b(a^2 -2a + 1) + a(b^2 - 2B + 1)\geq 0
\Leftrightarrow b(a-1)^2 + a(b-1)^2\geq 0
\Rightarrow Bất đẳng thức đúng\Rightarrow đpcm.

17 tháng 2 2017

Vì a,b > 0 =) ab > 0

Áp dụng BĐT Côsi cho hai số a,b không âm ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

Áp dụng BĐT Côsi cho hai số 1 , ab không âm ta có :

\(\frac{1+ab}{2}\ge\sqrt{ab}\)

\(\Rightarrow1+ab\ge2\sqrt{ab}\)

Ta có :

\(\frac{4ab}{1+ab}\le\frac{4ab}{2\sqrt{ab}}\)(Vì \(1+ab\ge2\sqrt{ab}\))

\(\frac{4ab}{2\sqrt{ab}}=2\sqrt{ab}\)

\(\Rightarrow\frac{4ab}{1+ab}\le2\sqrt{ab}\)(1)

Lại có : \(a+b\ge2\sqrt{ab}\)(2)

Từ (1) và (2) \(\Rightarrow a+b\ge\frac{4ab}{1+ab}\)

Chúc bạn học tốt =))ok

25 tháng 7 2017

vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)

\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)

\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v

25 tháng 7 2017

bài này 
áp dụng cô si ta có 
a³/b + ab ≥ 2a² 
b³/c + bc ≥ 2b² 
c³/a + ac ≥ 2c² 
+ + + 3 cái lại 
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc 
mặt khác ta có 
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé) 
thay vào 
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1 
=>minP = 1 
dấu bằng xảy ra <=. a = b = c = 1/√3 
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)

k và kết bạn cho mình nha !!!

21 tháng 4 2018

Sửa đề: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{b}}\right)^2\ge0\)

Cái này đúng vậy ta có điều phải chứng minh

26 tháng 6 2016

áp dụng cô si ta có 
a³/b + ab ≥ 2a² 
b³/c + bc ≥ 2b² 
c³/a + ac ≥ 2c² 
+ + + 3 cái lại 
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc 
mặt khác ta có 
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé) 

26 tháng 6 2016

Cảm ơn bạn nhé