Tìm x, y \(\in\)Z sao cho: \(\left|x\right|+\left|y\right|=3\)(x, y có vai trò bình đẳng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : y(x+y+z) + x(x+y+z) + z(x+y+z) = 18 +(-12) + 3
=> (x+y+z)^2 = 9
=> x+y+z = 3 hoặc -3
Xét x+y+z = 3
=> y = 6 ; x = -4 ; z = 1
Xét x+y+z = -3
=> y = -6 ; x= 4 ; z = -1
Vậy (x;y;z) = (6;-4;1) ; (-6;4;-1)
|X| + |Y| = 3
Với X, Y > 0 thì: |2| + |1| =3
vậy X= 2. Y=1 và ngược lại X= 1, Y=2
Với X,Y <0 thì: |-2| + |-1| =3
vậy X= -2, Y= -1 và ngược lại
Với X >0, Y<0 thì |2| + |-1| =3
vậy X=2, Y=-1 và ngược lại với X<0, Y>0
Với X hoặc Y = 0 thì có các nghiệm (X;Y)= (0;3), (0;-3), (3;0), (-3;0)
Đáng lẻ là gì nè :
| x | + | y | = 3
Ta có :
Thay x = -2
y = -1
=> | -2 | + | - 1 | = | -3 | = 3
Từ hệ thức :
\(y=tx+\left(1-t\right)z\)
Bất đẳng thức
\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\)
Trở thành :
\(\left|z\right|-\left|y\right|\ge t\left(\left|z\right|-\left|x\right|\right)\)
hay
\(\left|y\right|\le\left(1-t\right)\left|z\right|+t\left|x\right|\)
Vận dụng bất đẳng thức tam giác cho
\(y=\left(1-t\right)x+tx\) ta có kết quả
Bất đẳng thức thứ hai, được chứng minh tương tự bởi
\(y=tx+\left(1-t\right)z\)
tương đương với :
\(y-x=\left(1-t\right)\left(z-x\right)\)
Ngoài ra đây cũng là một dạng của nó: Câu hỏi của titanic - Toán lớp 8 - Học toán với OnlineMath (chắc hẵn có bạn thắc mắc tại sao mình phân tích "tài tình" như thế) . Bây giờ mình giải thích:
Khi quy đồng lên: \(VT-VP=\frac{ab^2+bc^2+ca^2-3abc}{abc}\)
Đặt cái tử số = f(a;b;c). Ta sẽ biểu diễn nó dưới dạng sos dao lam:
Ta tìm được 2 các biểu diễn:
\(f\left(a;b;c\right)=b\left(a-b\right)^2-\left(b-c\right)\left(a^2+b^2+bc-3ab\right)\)
\(f\left(a;b;c\right)=c\left(a+b-2c\right)^2+\left(b-c\right)\left(c-a\right)\left(4c-b\right)\)
Từ 2 cái trên ta tiến hành nhân chia các kiểu và tìm được:
\(f\left(a;b;c\right)=\frac{b\left(c-a\right)\left(4c-b\right)\left(a-b\right)^2+c\left(a^2+b^2+bc-3ab\right)\left(a+b-2c\right)^2}{\left(c-a\right)\left(4c-b\right)+\left(a^2+b^2+bc-3ab\right)}\)
Từ đó dẫn đến cách làm ở bài trên.
Theo mình, với trình độ THCS thì việc tìm ra 2 cách biểu diễn trên là khá khó khăn (mất nhiều thời gian, nhất là khi không sử dụng Wolfram|Alpha: Computational Intelligence để phân tích thành nhân tử). Theo ý kiến chủ quan, thì đó chính là nhược điểm của phương pháp này.
Tuy nhiên nó lại hay ở chỗ: Không bị cứng nhắc về cách biểu diễn, mình có thể biểu diễn dưới dạng tổng 2 bình phương or các kiểu tương tự bên dưới:v trong khi đó SOS thông thường cần tới 3 bình phương or các kiểu tổng quát như: \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge0\)
|x| + |y| = 3 = 1 + 2 = 2 + 1 = 0 + 3 = 3 + 0
Xét 4 trường hợp nêu trên , ta có :
\(\left(1\right)\hept{\begin{cases}\left|x\right|=1\\\left|y\right|=2\end{cases}\Rightarrow\hept{\begin{cases}-1\le x\le1\\-2\le y\le2\end{cases}}}\)
\(\left(2\right)\hept{\begin{cases}\left|x\right|=2\\\left|y\right|=1\end{cases}}\Rightarrow\hept{\begin{cases}-2\le x\le2\\-1\le y\le1\end{cases}}\)
\(\left(3\right)\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=3\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\-3\le y\le3\end{cases}}\)
\(\left(4\right)\hept{\begin{cases}\left|x\right|=3\\\left|y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}-3\le x\le3\\y=0\end{cases}}\)
Tất cả 4 trường hợp , không cái nào liên quan tới nhau