Tính tổng: 1+2+3+...+n. b) 1.2.3+2.3.4+3.4.5+...+n(n+1). c)1^2+2^2+3^2+....n^2. Bạn nào nhanh giải hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
a) \(A=1+2+2^2+...+2^{2016}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
\(\Rightarrow A=2^{2017}-1\)
Vậy \(A=2^{2017}-1\)
b) \(B=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow B=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Vậy...
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
a)
*\(1+2+3+...+\left(n-1\right)+n\)
Số số hạng là:
\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)
*\(1+3+5+...+\left(2n-1\right)\)
Số số hạng của dãy số là:
\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)
B=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
={1.2.3.(4-0)+2.3.4(5-1)+3.4.5.(6-2)+...+n(n+1)(n+2)[(n+3)-(n-1)]} : 4
= [1.2.3.4+2.3.4.5+3.4.5.6+...+n(n+1)(n+2)(n+3) - 1.2.3.4 - 2.3.4.5 - 3.4.5.6 - ... - n(n+1)(n+2)(n-1)] : 4
=\(\frac{\text{ n(n+1)(n+2)(n+3) }}{4}\)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)