K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

*\(1+2+3+...+\left(n-1\right)+n\)

Số số hạng là:

\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)

*\(1+3+5+...+\left(2n-1\right)\)

Số số hạng của dãy số là: 

\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)

18 tháng 8 2015

a)  A =(2n-1+1).(2n-1)/2=2n.(2n-1)/2=n(2n-1)

b)  B= 1.2+2.3+3.4+...+n(n+1)

3B=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)-(n-1)]

3B=1.2.3-1.2.3+2.3.4-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3B=n(n+1)(n+2)

B=n(n+1)(n+2)/3

 

4C=1.2.3.4+2.3.4.(5-1)+3.4.5(6-2)+...+n(n+1)(n+2).[(n+3)-(n-1)]

4C=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+...+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)

4C=n(n+1)(n+2)(n+3)

C=n(n+1)(n+2)(n+3)/4

15 tháng 7 2016

Câu b1 nếu mà là (n-1) thì sao

25 tháng 5 2017

a, 1 + 2 + 3 + ... + n = \(\left[\frac{n-1}{1}+1\right]\left[n+1\right]\)

1 + 3 + 5 + 7 + ... + [2n-1] = \(\left[\frac{2n-1-1}{2}+1\right]\left[2n-1+1\right]\)

b, A = 1.2+2.3+3.4+...+n[n+1] 

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n[n+1].3

Mà: 1.2.3 = 1.2.3 - 0.1.2

       2.3.3 = 2.3.4 - 1.2.3 

  .......................................

      n[n+1].3 = n[n+1][n+2] - [n-1]n[n+1]

=> 3A = [n-1]n[n+1]

=> A = \(\frac{\left[n-1\right]n\left[n+1\right]}{3}\)

1.2.3.+2.3.4+...+n[n+1][n+2]

4A = 1.2.3.[4-0] + 2.3.4.[5-1] + .... + n[n+1][n+2].[[n+3] - [n-1]]

4A =  1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n[n+1][n+2][n+3] - n[n+1][n+2][n-1]

4A = 1.2.3.4 - 1.2.3.4 + 2.3.4. 5 - 2.3.4.5 + ... + n[n+1][n+2][n+3] - n[n+1][n+2][n+3] + n[n+1][n+2][n-1]

4A = n[n+1][n+2][n-1]

A = \(\frac{\text{n[n+1][n+2][n-1]}}{4}\)

16 tháng 2 2021

https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088

29 tháng 11 2016

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

18 tháng 12 2015

tick mk lên 70 điểm với các bạn