Cho 2 đường thẳng (d1) : y=4x+2m-5
(d2): y=-3x+9-5m
a) CMR (d1) và (d2) luôn cắt nhau tại điểm A khi m thay đổi
b) CMR khi m thay đổi thì A luôn thuộc 1 đường cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là giao điểm
Pt hoành độ giao điểm:
\(3x_A-m-1=2x_A+m-1\Rightarrow x_A=2m\)
\(\Rightarrow\) Tung độ giao điểm: \(y_A=5m-1\)
\(\Rightarrow y_A=\dfrac{5}{2}.2m-1=\dfrac{5}{2}x_A-1\)
\(\Rightarrow\)Giao điểm của d1 và d2 luôn thuộc đường thẳng cố định: \(y=\dfrac{5}{2}x-1\)
Pt hoành độ giao điểm:
\(3x-m-1=2x+m-1\Rightarrow\left\{{}\begin{matrix}x=2m\\y=5m-1\end{matrix}\right.\)
\(\Rightarrow y-\frac{5}{2}x=5m-1-\frac{5}{2}.2m=-1\)
\(\Rightarrow y=\frac{5}{2}x-1\)
Vậy giao điểm của 2 đường thẳng luôn nằm trên đường thẳng \(y=\frac{5}{2}x-1\)