Rút gọn biểu thức\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}\)
\(=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
\(A=\dfrac{\sqrt{6+2\sqrt{5}}}{2-\sqrt{6-2\sqrt{5}}}-\dfrac{\sqrt{6-2\sqrt{5}}}{2+\sqrt{6+2\sqrt{5}}}\)
\(=\dfrac{\sqrt{5}+1}{2-\sqrt{5}+1}-\dfrac{\sqrt{5}-1}{3+\sqrt{5}}\)
\(=\dfrac{\left(3+\sqrt{5}\right)\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\left(3-\sqrt{5}\right)}{4}\)
\(=\dfrac{3\sqrt{5}+3+5+\sqrt{5}-3\sqrt{5}+5+3-\sqrt{5}}{4}\)
\(=4\)
b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)
\(=\dfrac{3-\sqrt{3}}{3}\)
\(a,=\dfrac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{11-3\sqrt{15}-13-3\sqrt{15}}{2}=\dfrac{-2-6\sqrt{15}}{2}=-1-3\sqrt{15}\)
\(b,=x\sqrt{2\left(x+1\right)}+\sqrt{\dfrac{2\left(x+1\right)^2}{x+1}}-\sqrt{\dfrac{16\left(x+1\right)}{2}}\\ =x\sqrt{2\left(x+1\right)}+\sqrt{2\left(x+1\right)}-2\sqrt{2\left(x+1\right)}\\ =\sqrt{2\left(x+1\right)}\left(x+1-2\right)=\left(x-1\right)\sqrt{2\left(x+1\right)}\)
a.\(=\dfrac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\dfrac{\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
\(=\dfrac{5-\sqrt{15}-2\sqrt{15}+6}{5-3}-\dfrac{10+2\sqrt{15}+\sqrt{15}+3}{5-3}\)
=\(\dfrac{11-3\sqrt{15}-13-3\sqrt{15}}{2}=\dfrac{-2-6\sqrt{15}}{2}\)
=\(-1-3\sqrt{15}\)
b.=\(x\sqrt{2\left(x+1\right)}+\left(x+1\right)\sqrt{\dfrac{2\left(x+1\right)}{\left(x+1\right)^2}}-4\sqrt{\dfrac{2\left(x+1\right)}{2^2}}\)
=\(x\sqrt{2\left(x+1\right)}+\sqrt{2\left(x+1\right)}-2\sqrt{2\left(x+1\right)}\)
=\(\sqrt{2\left(x+1\right)}\left(x+1-2\right)\)
=\(\left(x-1\right)\sqrt{2\left(x+1\right)}\)
\(a,=\dfrac{\sqrt{5}+1+\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}}{4}=\dfrac{\sqrt{5}}{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)^2}+\left|2-\sqrt{5}\right|=3-\sqrt{5}+\sqrt{5}-2=1\\ c,=\dfrac{2\left(\sqrt{5}-\sqrt{3}\right)}{2}-\dfrac{-\sqrt{3}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=\sqrt{5}-\sqrt{3}+\sqrt{3}=\sqrt{5}\)
`(5sqrt{1/5}+1/2sqrt{20}-5/4sqrt{4/5}+sqrt{5}):2/5
`=(sqrt5+1/2*2sqrt5-sqrt{5/4}+sqrt5):2/5`
`=(sqrt5+sqrt5+sqrt5-sqrt5/2):2/5`
`=(5/2*sqrt5):2/5`
`=25/4sqrt5`
`1/3sqrt{48}+3sqrt{75}-sqrt{27}-10sqrt{1 1/3}`
`=1/3*4sqrt3+3*5sqrt3-3sqrt3-10sqrt{4/3}`
`=4/sqrt3+15sqrt3-3sqrt3-20/sqrt3`
`=12sqrt3-16/sqrt3`
Chắc đề là: \(\dfrac{\sqrt{2}}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}-\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{4}-\sqrt{\dfrac{6+2\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{10}-\sqrt{2}}{4}-\sqrt{\left(\dfrac{\sqrt{5}+1}{2}\right)^2}=\dfrac{\sqrt{10}-\sqrt{2}}{4}-\dfrac{\sqrt{5}+1}{2}=\dfrac{\sqrt{10}-\sqrt{2}-2\sqrt{5}-2}{4}\)
\(=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{5}+1}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{5}+1}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\)
\(=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{4}\)
\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{1}{\sqrt{2}}\)